# -*- coding: utf-8 -*- import tensorflow_decision_forests as tfdf import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers import pandas as pd import gradio as gr import urllib input_path = "https://archive.ics.uci.edu/ml/machine-learning-databases/census-income-mld/census-income" input_column_header = "income_level" #Load data BASE_PATH = input_path CSV_HEADER = [ l.decode("utf-8").split(":")[0].replace(" ", "_") for l in urllib.request.urlopen(f"{BASE_PATH}.names") if not l.startswith(b"|")][2:] CSV_HEADER.append(input_column_header) train_data = pd.read_csv(f"{BASE_PATH}.data.gz", header=None, names=CSV_HEADER) test_data = pd.read_csv(f"{BASE_PATH}.test.gz", header=None, names=CSV_HEADER) #subset data train_data = train_data.loc[:, ["education", "sex", "capital_gains", "capital_losses", "income_level"]] test_data = test_data.loc[:, ["education", "sex", "capital_gains", "capital_losses", "income_level"]] def encode_df(df): sex_mapping = {" Male": 0, " Female": 1} df = df.replace({"sex": sex_mapping}) education_mapping = {" High school graduate": 1, " Some college but no degree": 2, " 10th grade": 3, " Children": 4, " Bachelors degree(BA AB BS)": 5, " Masters degree(MA MS MEng MEd MSW MBA)": 6, " Less than 1st grade": 7, " Associates degree-academic program": 8, " 7th and 8th grade": 9, " 12th grade no diploma": 10, " Associates degree-occup /vocational": 11, " Prof school degree (MD DDS DVM LLB JD)": 12, " 5th or 6th grade": 13, " 11th grade": 14, " Doctorate degree(PhD EdD)": 15, " 9th grade": 16, " 1st 2nd 3rd or 4th grade": 17} df = df.replace({"education": education_mapping}) income_mapping = {' - 50000.': 0, ' 50000+.': 1} df = df.replace({"income_level": income_mapping}) return df train_data = encode_df(train_data) test_data = encode_df(test_data) feature_a = tfdf.keras.FeatureUsage(name="education", semantic=tfdf.keras.FeatureSemantic.CATEGORICAL) feature_b = tfdf.keras.FeatureUsage(name="sex", semantic=tfdf.keras.FeatureSemantic.CATEGORICAL) feature_c = tfdf.keras.FeatureUsage(name="capital_gains", semantic=tfdf.keras.FeatureSemantic.CATEGORICAL) feature_d = tfdf.keras.FeatureUsage(name="capital_losses", semantic=tfdf.keras.FeatureSemantic.CATEGORICAL) # Convert the dataset into a TensorFlow dataset. train_ds = tfdf.keras.pd_dataframe_to_tf_dataset(train_data, label="income_level") test_ds = tfdf.keras.pd_dataframe_to_tf_dataset(test_data, label="income_level") # Train a GB Trees model model = tfdf.keras.GradientBoostedTreesModel( features = [feature_a, feature_b, feature_c, feature_d], exclude_non_specified_features = True, growing_strategy = "BEST_FIRST_GLOBAL", num_trees = 350, max_depth = 7, min_examples = 6, subsample = 0.65, sampling_method = "GOSS", validation_ratio = 0.1, task = tfdf.keras.Task.CLASSIFICATION, loss = "DEFAULT", verbose=0) model.compile(metrics=[keras.metrics.BinaryAccuracy(name="accuracy")]) model.fit(train_ds) #model.evaluate(test_ds) #prepare user input for the model def process_inputs(education, sex, capital_gains, capital_losses): df = pd.DataFrame.from_dict( { "education": [edu_in], "sex": [sex_in], "capital_gains": [cap_gains_in], "capital_losses": [cap_losses_in] } ) df = encode_df(df) feature_a = tfdf.keras.FeatureUsage(name="education", semantic=tfdf.keras.FeatureSemantic.CATEGORICAL) feature_b = tfdf.keras.FeatureUsage(name="sex", semantic=tfdf.keras.FeatureSemantic.CATEGORICAL) feature_c = tfdf.keras.FeatureUsage(name="capital_gains", semantic=tfdf.keras.FeatureSemantic.CATEGORICAL) feature_d = tfdf.keras.FeatureUsage(name="capital_losses", semantic=tfdf.keras.FeatureSemantic.CATEGORICAL) df = tfdf.keras.pd_dataframe_to_tf_dataset(df) pred = model.predict(df) if pred > .5: pred_bi = 1 return {"> $50,000": pred_bi} elif pred <=.5: pred_bi = 0 return {"<= $50,000": pred_bi} iface = gr.Interface( process_inputs, [ gr.inputs.Dropdown([" 1st 2nd 3rd or 4th grade", " High school graduate", " Bachelors degree(BA AB BS)", " Masters degree(MA MS MEng MEd MSW MBA)", " Prof school degree (MD DDS DVM LLB JD)", " Doctorate degree(PhD EdD)"], type="index", label="education"), gr.inputs.Radio([" Male", " Female"], label="sex", type="index"), gr.inputs.Slider(minimum = 0, maximum = 99999, label="capital_gains"), gr.inputs.Slider(minimum = 0, maximum = 4608, label="capital_losses") ], gr.outputs.Label(num_top_classes=2), live=True, analytics_enabled=False )