kedimestan commited on
Commit
d89ced9
·
verified ·
1 Parent(s): f1bf2d6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -13
app.py CHANGED
@@ -1,9 +1,9 @@
1
  import gradio as gr
2
  import sahi
3
  import torch
4
- from ultralyticsplus import YOLO, render_model_output
5
 
6
- # Images
7
  sahi.utils.file.download_from_url(
8
  "https://raw.githubusercontent.com/kadirnar/dethub/main/data/images/highway.jpg",
9
  "highway.jpg",
@@ -17,7 +17,6 @@ sahi.utils.file.download_from_url(
17
  "zidane.jpg",
18
  )
19
 
20
-
21
  model_names = [
22
  "yolov8n-seg.pt",
23
  "yolov8s-seg.pt",
@@ -46,7 +45,7 @@ def yolov8_inference(
46
  conf_threshold: Confidence threshold
47
  iou_threshold: IOU threshold
48
  Returns:
49
- Rendered image
50
  """
51
  global model
52
  global current_model_name
@@ -56,14 +55,14 @@ def yolov8_inference(
56
  model.overrides["conf"] = conf_threshold
57
  model.overrides["iou"] = iou_threshold
58
  results = model.predict(image, imgsz=image_size, return_outputs=True)
59
- renders = []
60
- for image_results in model.predict(image, imgsz=image_size, return_outputs=True):
61
- render = render_model_output(
62
- model=model, image=image, model_output=image_results
63
- )
64
- renders.append(render)
65
 
66
- return renders[0]
67
 
68
 
69
  inputs = [
@@ -80,8 +79,8 @@ inputs = [
80
  gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"),
81
  ]
82
 
83
- outputs = gr.Image(type="filepath", label="Output Image")
84
- title = "Ultralytics YOLOv8 Segmentation Demo"
85
 
86
  examples = [
87
  ["zidane.jpg", "yolov8m-seg.pt", 640, 0.6, 0.45],
 
1
  import gradio as gr
2
  import sahi
3
  import torch
4
+ from ultralyticsplus import YOLO
5
 
6
+ # Download images
7
  sahi.utils.file.download_from_url(
8
  "https://raw.githubusercontent.com/kadirnar/dethub/main/data/images/highway.jpg",
9
  "highway.jpg",
 
17
  "zidane.jpg",
18
  )
19
 
 
20
  model_names = [
21
  "yolov8n-seg.pt",
22
  "yolov8s-seg.pt",
 
45
  conf_threshold: Confidence threshold
46
  iou_threshold: IOU threshold
47
  Returns:
48
+ Bounding box coordinates in xyxy format
49
  """
50
  global model
51
  global current_model_name
 
55
  model.overrides["conf"] = conf_threshold
56
  model.overrides["iou"] = iou_threshold
57
  results = model.predict(image, imgsz=image_size, return_outputs=True)
58
+
59
+ boxes = []
60
+ for result in results:
61
+ # Extract bounding boxes (xyxy format)
62
+ for box in result.boxes.xyxy:
63
+ boxes.append(box.tolist())
64
 
65
+ return boxes
66
 
67
 
68
  inputs = [
 
79
  gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"),
80
  ]
81
 
82
+ outputs = gr.JSON(label="Bounding Boxes (xyxy format)")
83
+ title = "YOLOv8 Bounding Box Extraction Demo"
84
 
85
  examples = [
86
  ["zidane.jpg", "yolov8m-seg.pt", 640, 0.6, 0.45],