|
import gradio as gr |
|
import torch |
|
from diffusers import StableDiffusionImg2ImgPipeline |
|
from .utils.schedulers import SCHEDULER_LIST, get_scheduler_list |
|
from .utils.prompt2prompt import generate |
|
from .utils.device import get_device |
|
from PIL import Image |
|
from .download import get_share_js, get_community_loading_icon, CSS |
|
|
|
IMG2IMG_MODEL_LIST = { |
|
"StableDiffusion 1.5" : "runwayml/stable-diffusion-v1-5", |
|
"StableDiffusion 2.1" : "stabilityai/stable-diffusion-2-1", |
|
"OpenJourney v4" : "prompthero/openjourney-v4", |
|
"DreamLike 1.0" : "dreamlike-art/dreamlike-diffusion-1.0", |
|
"DreamLike 2.0" : "dreamlike-art/dreamlike-photoreal-2.0" |
|
} |
|
|
|
class StableDiffusionImage2ImageGenerator: |
|
def __init__(self): |
|
self.pipe = None |
|
|
|
def load_model(self, model_path, scheduler): |
|
model_path = IMG2IMG_MODEL_LIST[model_path] |
|
if self.pipe is None: |
|
self.pipe = StableDiffusionImg2ImgPipeline.from_pretrained( |
|
model_path, safety_checker=None, torch_dtype=torch.float32 |
|
) |
|
|
|
device = get_device() |
|
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler) |
|
|
|
self.pipe.to(device) |
|
|
|
|
|
return self.pipe |
|
|
|
def generate_image( |
|
self, |
|
image_path: str, |
|
model_path: str, |
|
prompt: str, |
|
negative_prompt: str, |
|
num_images_per_prompt: int, |
|
scheduler: str, |
|
guidance_scale: int, |
|
num_inference_step: int, |
|
seed_generator=0, |
|
): |
|
pipe = self.load_model( |
|
model_path=model_path, |
|
scheduler=scheduler, |
|
) |
|
|
|
if seed_generator == 0: |
|
random_seed = torch.randint(0, 1000000, (1,)) |
|
generator = torch.manual_seed(random_seed) |
|
else: |
|
generator = torch.manual_seed(seed_generator) |
|
|
|
image = Image.open(image_path) |
|
images = pipe( |
|
prompt, |
|
image=image, |
|
negative_prompt=negative_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
num_inference_steps=num_inference_step, |
|
guidance_scale=guidance_scale, |
|
generator=generator, |
|
).images |
|
|
|
return images |
|
|
|
def app(): |
|
demo = gr.Blocks(css=CSS) |
|
with demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
image2image_image_file = gr.Image( |
|
type="filepath", label="Upload",elem_id="image-upload-img2img" |
|
).style(height=260) |
|
|
|
image2image_prompt = gr.Textbox( |
|
lines=1, |
|
placeholder="Prompt", |
|
show_label=False, |
|
elem_id="prompt-text-input-img2img", |
|
value='' |
|
) |
|
|
|
image2image_negative_prompt = gr.Textbox( |
|
lines=1, |
|
placeholder="Negative Prompt", |
|
show_label=False, |
|
elem_id = "negative-prompt-text-input-img2img", |
|
value='' |
|
) |
|
|
|
|
|
image2image_generate_prompt_button = gr.Button( |
|
label="Generate Prompt", |
|
type="primary", |
|
align="center", |
|
value = "Generate Prompt" |
|
) |
|
|
|
|
|
image2image_generated_prompt = gr.Textbox( |
|
lines=1, |
|
placeholder="Generated Prompt", |
|
show_label=False, |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
image2image_model_path = gr.Dropdown( |
|
choices=list(IMG2IMG_MODEL_LIST.keys()), |
|
value=list(IMG2IMG_MODEL_LIST.keys())[0], |
|
label="Imaget2Image Model Selection", |
|
elem_id="model-dropdown-img2img", |
|
) |
|
|
|
image2image_guidance_scale = gr.Slider( |
|
minimum=0.1, |
|
maximum=15, |
|
step=0.1, |
|
value=7.5, |
|
label="Guidance Scale", |
|
elem_id = "guidance-scale-slider-img2img" |
|
) |
|
|
|
image2image_num_inference_step = gr.Slider( |
|
minimum=1, |
|
maximum=100, |
|
step=1, |
|
value=50, |
|
label="Num Inference Step", |
|
elem_id = "num-inference-step-slider-img2img" |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
image2image_scheduler = gr.Dropdown( |
|
choices=SCHEDULER_LIST, |
|
value=SCHEDULER_LIST[0], |
|
label="Scheduler", |
|
elem_id="scheduler-dropdown-img2img", |
|
) |
|
image2image_num_images_per_prompt = gr.Slider( |
|
minimum=1, |
|
maximum=30, |
|
step=1, |
|
value=1, |
|
label="Number Of Images", |
|
) |
|
|
|
image2image_seed_generator = gr.Slider( |
|
label="Seed(0 for random)", |
|
minimum=0, |
|
maximum=1000000, |
|
value=0, |
|
elem_id="seed-slider-img2img", |
|
) |
|
|
|
image2image_predict_button = gr.Button(value="Generator") |
|
|
|
with gr.Column(): |
|
output_image = gr.Gallery( |
|
label="Generated images", |
|
show_label=False, |
|
elem_id="gallery", |
|
).style(grid=(1, 2)) |
|
|
|
with gr.Group(elem_id="container-advanced-btns"): |
|
with gr.Group(elem_id="share-btn-container"): |
|
community_icon_html, loading_icon_html = get_community_loading_icon("img2img") |
|
community_icon = gr.HTML(community_icon_html) |
|
loading_icon = gr.HTML(loading_icon_html) |
|
share_button = gr.Button("Save artwork", elem_id="share-btn-img2img") |
|
|
|
image2image_predict_button.click( |
|
fn=StableDiffusionImage2ImageGenerator().generate_image, |
|
inputs=[ |
|
image2image_image_file, |
|
image2image_model_path, |
|
image2image_prompt, |
|
image2image_negative_prompt, |
|
image2image_num_images_per_prompt, |
|
image2image_scheduler, |
|
image2image_guidance_scale, |
|
image2image_num_inference_step, |
|
image2image_seed_generator, |
|
], |
|
outputs=[output_image], |
|
) |
|
|
|
image2image_generate_prompt_button.click( |
|
fn=generate, |
|
inputs=[image2image_prompt], |
|
outputs=[image2image_generated_prompt], |
|
) |
|
|
|
|
|
return demo |
|
|
|
|