File size: 8,390 Bytes
a228fac
0dd8e27
 
a228fac
 
 
 
 
 
 
0dd8e27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccb5ac8
0dd8e27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import numpy as np
from preprocess import normalize_box
import copy

def classifyTokens(model, input_ids, attention_mask, bbox, offset_mapping):
    outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask)
    # take argmax on last dimension to get predicted class ID per token
    predictions = outputs.logits.argmax(-1).squeeze().tolist()
    return predictions

def compare_boxes(b1,b2):
  b1 = np.array([c for c in b1])
  b2 = np.array([c for c in b2])
  equal = np.array_equal(b1,b2)
  return equal

def mergable(w1,w2):
  if w1['label'] == w2['label']:
    threshold = 7
    if abs(w1['box'][1] - w2['box'][1]) < threshold or abs(w1['box'][-1] - w2['box'][-1]) < threshold:
      return True
    return False
  return False

def convert_data(data, tokenizer, img_size):
  def normalize_bbox(bbox, size):
    return [
        int(1000 * bbox[0] / size[0]),
        int(1000 * bbox[1] / size[1]),
        int(1000 * bbox[2] / size[0]),
        int(1000 * bbox[3] / size[1]),
    ]


  def simplify_bbox(bbox):
      return [
          min(bbox[0::2]),
          min(bbox[1::2]),
          max(bbox[2::2]),
          max(bbox[3::2]),
      ]

  def merge_bbox(bbox_list):
    x0, y0, x1, y1 = list(zip(*bbox_list))
    return [min(x0), min(y0), max(x1), max(y1)]

  tokenized_doc = {"input_ids": [], "bbox": [], "labels": [], "attention_mask":[]}
  entities = []
  id2label = {}
  entity_id_to_index_map = {}
  empty_entity = set()
  for line in data:
      if len(line["text"]) == 0:
          empty_entity.add(line["id"])
          continue
      id2label[line["id"]] = line["label"]
      tokenized_inputs = tokenizer(
          line["text"],
          add_special_tokens=False,
          return_offsets_mapping=True,
          return_attention_mask=True,
      )
      text_length = 0
      ocr_length = 0
      bbox = []
      for token_id, offset in zip(tokenized_inputs["input_ids"], tokenized_inputs["offset_mapping"]):
          if token_id == 6:
              bbox.append(None)
              continue
          text_length += offset[1] - offset[0]
          tmp_box = []
          while ocr_length < text_length:
              ocr_word = line["words"].pop(0)
              ocr_length += len(
                  tokenizer._tokenizer.normalizer.normalize_str(ocr_word["text"].strip())
              )
              tmp_box.append(simplify_bbox(ocr_word["box"]))
          if len(tmp_box) == 0:
              tmp_box = last_box
          bbox.append(normalize_bbox(merge_bbox(tmp_box), img_size))
          last_box = tmp_box  # noqa
      bbox = [
          [bbox[i + 1][0], bbox[i + 1][1], bbox[i + 1][0], bbox[i + 1][1]] if b is None else b
          for i, b in enumerate(bbox)
      ]
      if line["label"] == "other":
          label = ["O"] * len(bbox)
      else:
          label = [f"I-{line['label'].upper()}"] * len(bbox)
          label[0] = f"B-{line['label'].upper()}"
      tokenized_inputs.update({"bbox": bbox, "labels": label})
      if label[0] != "O":
          entity_id_to_index_map[line["id"]] = len(entities)
          entities.append(
              {
                  "start": len(tokenized_doc["input_ids"]),
                  "end": len(tokenized_doc["input_ids"]) + len(tokenized_inputs["input_ids"]),
                  "label": line["label"].upper(),
              }
          )
      for i in tokenized_doc:
          tokenized_doc[i] = tokenized_doc[i] + tokenized_inputs[i]

  chunk_size = 512
  output = {}
  for chunk_id, index in enumerate(range(0, len(tokenized_doc["input_ids"]), chunk_size)):
    item = {}
    entities_in_this_span = []
    for k in tokenized_doc:
        item[k] = tokenized_doc[k][index : index + chunk_size]
    global_to_local_map = {}
    for entity_id, entity in enumerate(entities):
        if (
            index <= entity["start"] < index + chunk_size
            and index <= entity["end"] < index + chunk_size
        ):
            entity["start"] = entity["start"] - index
            entity["end"] = entity["end"] - index
            global_to_local_map[entity_id] = len(entities_in_this_span)
            entities_in_this_span.append(entity)
    item.update(
        {
            "entities": entities_in_this_span
        }
    )
    for key in item.keys():
      output[key] = output.get(key, []) + item[key]
  return output

def dfs(i, merged, width, height, visited, df_words):
    v_threshold = int(.01 * height)
    h_threshold = int(.08 * width)
    visited.add(i)
    merged.append(df_words[i])

    for j in range(len(df_words)):
        if j not in visited:
            w1 = df_words[i]['words'][0]
            w2 = df_words[j]['words'][0]

            # and
            if (abs(w1['box'][1] - w2['box'][1]) < v_threshold or abs(w1['box'][-1] - w2['box'][-1]) < v_threshold) \
                and (df_words[i]['label'] == df_words[j]['label']) \
                and (abs(w1['box'][0] - w2['box'][0]) < h_threshold or abs(w1['box'][-2] - w2['box'][-2]) < h_threshold):
                dfs(j,merged, width, height, visited, df_words)
    return merged

def createEntities(model, predictions, input_ids, ocr_df, tokenizer, img_size, bbox):
    width, height = img_size
    words = []
    for index,row in ocr_df.iterrows():
        word = {}
        origin_box = [row['left'],row['top'],row['left']+row['width'],row['top']+row['height']]
        word['word_text'] = row['text']
        word['word_box'] = origin_box
        word['normalized_box'] = normalize_box(word['word_box'], width, height)
        words.append(word)

    raw_input_ids = input_ids[0].tolist()
    token_boxes = bbox.squeeze().tolist()
    special_tokens = [tokenizer.cls_token_id, tokenizer.sep_token_id, tokenizer.pad_token_id]

    input_ids = [id for id in raw_input_ids if id not in special_tokens]
    predictions = [model.config.id2label[prediction] for i,prediction in enumerate(predictions) if not (raw_input_ids[i] in special_tokens)]
    actual_boxes = [box for i,box in enumerate(token_boxes) if not (raw_input_ids[i] in special_tokens )]

    assert(len(actual_boxes) == len(predictions))

    for word in words:
        word_labels = []
        token_labels = []
        word_tagging = None
        for i,box in enumerate(actual_boxes,start=0):
            if compare_boxes(word['normalized_box'],box):
                if predictions[i] != 'O':
                    word_labels.append(predictions[i][2:])
                else:
                    word_labels.append('O')
                token_labels.append(predictions[i])
        if word_labels != []:
            word_tagging =  word_labels[0] if word_labels[0] != 'O' else word_labels[-1]
        else:
            word_tagging = 'O'
        word['word_labels'] = token_labels
        word['word_tagging'] = word_tagging

    filtered_words = [{'id':i,'text':word['word_text'],
                'label':word['word_tagging'],
                'box':word['word_box'],
                'words':[{'box':word['word_box'],'text':word['word_text']}]} for i,word in enumerate(words) if word['word_tagging'] != 'O']

    merged_taggings = []
    df_words = filtered_words.copy()
    visited = set()
    for i in range(len(df_words)):
        if i not in visited:
            merged_taggings.append(dfs(i,[], width, height, visited, df_words))
    merged_words = []
    for i,merged_tagging in enumerate(merged_taggings):
        if ((len(merged_tagging) > 1)) or (merged_tagging[0]['label'] == 'ANSWER'):
            new_word = {}
            merging_word = " ".join([word['text'] for word in merged_tagging])
            merging_box = [merged_tagging[0]['box'][0]-5,merged_tagging[0]['box'][1]-10,merged_tagging[-1]['box'][2]+5,merged_tagging[-1]['box'][3]+10]
            new_word['text'] = merging_word
            new_word['box'] = merging_box
            new_word['label'] = merged_tagging[0]['label']
            new_word['id'] = filtered_words[-1]['id']+i+1
            new_word['words'] = [{'box':word['box'],'text':word['text']} for word in merged_tagging]
            # new_word['start'] =
            merged_words.append(new_word)

    filtered_words.extend(merged_words)
    predictions = [word['label'] for word in filtered_words]
    actual_boxes = [word['box'] for word in filtered_words]
    unique_taggings = set(predictions)

    output = convert_data(copy.deepcopy(merged_words), tokenizer, img_size)
    return output, merged_words