Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +47 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from peft import PeftModel
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
base_model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
|
8 |
+
model = PeftModel.from_pretrained(base_model, "katsuchi/bert-base-uncased-twitter-sentiment-analysis")
|
9 |
+
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
11 |
+
|
12 |
+
def get_sentiment(input_sentence):
|
13 |
+
inputs = tokenizer(input_sentence, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
14 |
+
|
15 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
16 |
+
|
17 |
+
with torch.no_grad():
|
18 |
+
outputs = model(**inputs)
|
19 |
+
logits = outputs.logits
|
20 |
+
|
21 |
+
probabilities = torch.nn.functional.softmax(logits, dim=-1).squeeze().cpu().numpy()
|
22 |
+
|
23 |
+
labels = ["Negative", "Positive"]
|
24 |
+
|
25 |
+
result = {labels[i]: round(prob, 3) for i, prob in enumerate(probabilities)}
|
26 |
+
|
27 |
+
return result
|
28 |
+
|
29 |
+
# Example sentences
|
30 |
+
examples = [
|
31 |
+
["I love this product!"],
|
32 |
+
["This is the worst experience ever."],
|
33 |
+
["The movie was okay, not great but not bad."],
|
34 |
+
["Absolutely terrible, do not buy!"],
|
35 |
+
["I feel amazing today!"]
|
36 |
+
]
|
37 |
+
|
38 |
+
iface = gr.Interface(
|
39 |
+
fn=get_sentiment,
|
40 |
+
inputs=gr.Textbox(label="Enter a sentence for sentiment analysis"),
|
41 |
+
outputs=gr.JSON(label="Sentiment Probabilities"),
|
42 |
+
title="Sentiment Analysis with Bert",
|
43 |
+
description="Enter a sentence, and this model will predict the sentiment (positive/negative) along with the probabilities.",
|
44 |
+
examples=examples
|
45 |
+
)
|
46 |
+
|
47 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
transformers
|
4 |
+
peft
|
5 |
+
numpy
|