katielink commited on
Commit
a2cbc95
Β·
1 Parent(s): 3b059ad

Update description in app.py and try examples again

Browse files
Files changed (2) hide show
  1. app.py +8 -13
  2. examples/log.csv +2 -0
app.py CHANGED
@@ -21,11 +21,6 @@ description = """
21
  ## Brain Tumor Segmentation 🧠
22
  A pre-trained model for volumetric (3D) segmentation of brain tumor subregions from multimodal MRIs based on BraTS 2018 data.
23
 
24
- The model is trained to segment 3 nested subregions of primary brain tumors (gliomas): the "enhancing tumor" (ET), the "tumor core" (TC), the "whole tumor" (WT) based on 4 aligned input MRI scans (T1c, T1, T2, FLAIR).
25
- - The ET is described by areas that show hyper intensity in T1c when compared to T1, but also when compared to "healthy" white matter in T1c.
26
- - The TC describes the bulk of the tumor, which is what is typically resected. The TC entails the ET, as well as the necrotic (fluid-filled) and the non-enhancing (solid) parts of the tumor.
27
- - The WT describes the complete extent of the disease, as it entails the TC and the peritumoral edema (ED), which is typically depicted by hyper-intense signal in FLAIR.
28
-
29
  ## To run πŸš€
30
 
31
  Upload a image file in the format: 4 channel MRI (4 aligned MRIs T1c, T1, T2, FLAIR at 1x1x1 mm)
@@ -36,9 +31,9 @@ This is an example, not to be used for diagnostic purposes.
36
 
37
  ## References πŸ‘€
38
 
39
- [1] Myronenko, Andriy. "3D MRI brain tumor segmentation using autoencoder regularization." International MICCAI Brainlesion Workshop. Springer, Cham, 2018. https://arxiv.org/abs/1810.11654.
40
- [2] Menze BH, et al. "The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)", IEEE Transactions on Medical Imaging 34(10), 1993-2024 (2015) DOI: 10.1109/TMI.2014.2377694
41
- [3] Bakas S, et al. "Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features", Nature Scientific Data, 4:170117 (2017) DOI:10.1038/sdata.2017.117
42
  """
43
 
44
  #examples = 'examples/'
@@ -94,19 +89,19 @@ def predict(input_file, z_axis, model=model, device=device):
94
  #pred_et_image = pred_image[0, 1, :, :, z_axis]
95
  #pred_wt_image = pred_image[0, 2, :, :, z_axis]
96
 
97
- return input_t1c_image, pred_tc_image, z_axis
98
 
99
 
100
  iface = gr.Interface(
101
  fn=predict,
102
  inputs=[
103
- gr.File(label='Nifti file'),
104
  gr.Slider(0, 200, label='z-axis', value=100)
105
  ],
106
  outputs=[
107
- gr.Image(label='input image'),
108
- gr.Image(label='segmentation'),
109
- gr.Slider(0, 200, label='z-axis', value=100)],
110
  title=title,
111
  description=description,
112
  #examples=examples,
 
21
  ## Brain Tumor Segmentation 🧠
22
  A pre-trained model for volumetric (3D) segmentation of brain tumor subregions from multimodal MRIs based on BraTS 2018 data.
23
 
 
 
 
 
 
24
  ## To run πŸš€
25
 
26
  Upload a image file in the format: 4 channel MRI (4 aligned MRIs T1c, T1, T2, FLAIR at 1x1x1 mm)
 
31
 
32
  ## References πŸ‘€
33
 
34
+ 1. Myronenko, Andriy. "3D MRI brain tumor segmentation using autoencoder regularization." International MICCAI Brainlesion Workshop. Springer, Cham, 2018. https://arxiv.org/abs/1810.11654.
35
+ 2. Menze BH, et al. "The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)", IEEE Transactions on Medical Imaging 34(10), 1993-2024 (2015) DOI: 10.1109/TMI.2014.2377694
36
+ 3. Bakas S, et al. "Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features", Nature Scientific Data, 4:170117 (2017) DOI:10.1038/sdata.2017.117
37
  """
38
 
39
  #examples = 'examples/'
 
89
  #pred_et_image = pred_image[0, 1, :, :, z_axis]
90
  #pred_wt_image = pred_image[0, 2, :, :, z_axis]
91
 
92
+ return input_t1c_image, pred_tc_image,
93
 
94
 
95
  iface = gr.Interface(
96
  fn=predict,
97
  inputs=[
98
+ gr.File(label='Input file'),
99
  gr.Slider(0, 200, label='z-axis', value=100)
100
  ],
101
  outputs=[
102
+ gr.Image(label='T1C image'),
103
+ gr.Image(label='Segmentation'),
104
+ ],
105
  title=title,
106
  description=description,
107
  #examples=examples,
examples/log.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ input_file
2
+ BRATS_485.nii.gz