Spaces:
Sleeping
Sleeping
karthiksagarn
commited on
Commit
•
738fa95
1
Parent(s):
6185e3d
Upload 3 files
Browse files- app.py +112 -0
- background_image.png +0 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
# exec(os.getenv("CODE")) # to execute the whole code in huggingface.
|
3 |
+
|
4 |
+
import streamlit as st
|
5 |
+
from PyPDF2 import PdfReader
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
8 |
+
import google.generativeai as genai
|
9 |
+
from langchain_community.vectorstores import FAISS
|
10 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
11 |
+
from langchain.chains.question_answering import load_qa_chain
|
12 |
+
from langchain.prompts import PromptTemplate
|
13 |
+
from dotenv import load_dotenv
|
14 |
+
import base64
|
15 |
+
from io import BytesIO
|
16 |
+
|
17 |
+
load_dotenv()
|
18 |
+
|
19 |
+
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
20 |
+
|
21 |
+
## going to each and very pdf and each page of that padf and extracting text from it.
|
22 |
+
def get_pdf_text(pdf_docs):
|
23 |
+
text = ""
|
24 |
+
for pdf in pdf_docs:
|
25 |
+
pdf_reader = PdfReader(BytesIO(pdf.read()))
|
26 |
+
for page in pdf_reader.pages:
|
27 |
+
text+=page.extract_text()
|
28 |
+
return text
|
29 |
+
|
30 |
+
def get_text_chunks(text):
|
31 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 10000, chunk_overlap = 1000)
|
32 |
+
chunks = text_splitter.split_text(text)
|
33 |
+
return chunks
|
34 |
+
|
35 |
+
## converting chunks into vectors
|
36 |
+
def get_vector_store(text_chunks):
|
37 |
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
38 |
+
vector_store = FAISS.from_texts(text_chunks, embedding =embeddings)
|
39 |
+
vector_store.save_local("faiss_index")
|
40 |
+
|
41 |
+
## developing bot
|
42 |
+
def get_conversational_chain():
|
43 |
+
prompt_template= """
|
44 |
+
Answer the question as detailed as possible from the provided context, make sure to provide
|
45 |
+
all the details if the answer is not in the provided context just say, "answer is not available in the context",
|
46 |
+
don't provide the wrong answer.
|
47 |
+
Context: \n{context}?\n
|
48 |
+
Question: \n{question}\n
|
49 |
+
|
50 |
+
Answer:
|
51 |
+
"""
|
52 |
+
model = ChatGoogleGenerativeAI(model = "gemini-pro", temperature= 0.45)
|
53 |
+
prompt= PromptTemplate(template=prompt_template, input_variables=['context', 'question'])
|
54 |
+
chain = load_qa_chain(model, chain_type="stuff", prompt= prompt)
|
55 |
+
return chain
|
56 |
+
|
57 |
+
## the user input interface
|
58 |
+
def user_input(user_question):
|
59 |
+
embeddings = GoogleGenerativeAIEmbeddings(model='models/embedding-001')
|
60 |
+
|
61 |
+
db = FAISS.load_local('faiss_index', embeddings, allow_dangerous_deserialization= True)
|
62 |
+
docs = db.similarity_search(user_question)
|
63 |
+
|
64 |
+
chain = get_conversational_chain()
|
65 |
+
|
66 |
+
response= chain({"input_documents":docs, "question":user_question}, return_only_outputs=True)
|
67 |
+
|
68 |
+
print(response)
|
69 |
+
st.write("Bot: ", response["output_text"])
|
70 |
+
|
71 |
+
# streamlit app
|
72 |
+
def main():
|
73 |
+
st.set_page_config(page_title="Chat With Multiple PDF")
|
74 |
+
|
75 |
+
# Function to set a background image
|
76 |
+
def set_background(image_file):
|
77 |
+
with open(image_file, "rb") as image:
|
78 |
+
b64_image = base64.b64encode(image.read()).decode("utf-8")
|
79 |
+
css = f"""
|
80 |
+
<style>
|
81 |
+
.stApp {{
|
82 |
+
background: url(data:image/png;base64,{b64_image});
|
83 |
+
background-size: cover;
|
84 |
+
background-position: centre;
|
85 |
+
backgroun-repeat: no-repeat;
|
86 |
+
}}
|
87 |
+
</style>
|
88 |
+
"""
|
89 |
+
st.markdown(css, unsafe_allow_html=True)
|
90 |
+
|
91 |
+
# Set the background image
|
92 |
+
set_background("background_image.png")
|
93 |
+
|
94 |
+
st.header("Podcast With Your PDF's")
|
95 |
+
|
96 |
+
user_question = st.text_input("Ask a Question from the PDF Files")
|
97 |
+
|
98 |
+
if user_question:
|
99 |
+
user_input(user_question)
|
100 |
+
|
101 |
+
with st.sidebar:
|
102 |
+
st.title("Menu:")
|
103 |
+
pdf_docs = st.file_uploader("Upload Your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True, type='pdf')
|
104 |
+
if st.button("Submit & Process") :
|
105 |
+
with st.spinner("Processing..."):
|
106 |
+
raw_text = get_pdf_text(pdf_docs)
|
107 |
+
text_chunks = get_text_chunks(raw_text)
|
108 |
+
get_vector_store(text_chunks)
|
109 |
+
st.success("Done")
|
110 |
+
|
111 |
+
if __name__ == "__main__":
|
112 |
+
main()
|
background_image.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
google-generativeai
|
3 |
+
python-dotenv
|
4 |
+
langchain
|
5 |
+
langchain-community
|
6 |
+
PyPDF2
|
7 |
+
faiss-cpu
|
8 |
+
langchain_google_genai
|