kamau1 commited on
Commit
e84b5e6
·
1 Parent(s): 678ae9f

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. modules/app.py +117 -0
  2. modules/flores200_codes.py +211 -0
modules/app.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ Created By Lewis Kamau Kimaru
3
+ Sema fastapi backend
4
+ August 2023
5
+ '''
6
+
7
+ from fastapi import FastAPI, HTTPException, Request
8
+ from fastapi.middleware.cors import CORSMiddleware
9
+ from fastapi.responses import HTMLResponse
10
+ import gradio as gr
11
+ import ctranslate2
12
+ import sentencepiece as spm
13
+ import fasttext
14
+ import uvicorn
15
+ from pyngrok import ngrok
16
+ import nest_asyncio
17
+ import os
18
+
19
+ app = FastAPI()
20
+
21
+ # Set your ngrok authtoken
22
+ #ngrok.set_auth_token("2UAhCqf5zP0cCgJzeadNANkbIqx_7ZJvhkDSNWccqMX2hyxXP")
23
+ #ngrok.set_auth_token("2S6xeFEoSVFWr2egtDRcqgeUtSx_2juefHFkEW6nGbpRHS37W")
24
+ #ngrok.set_auth_token("2UAmdjHdAFV9x84TdyEknIfNhYk_4Ye8n4YK7ZhfCMob3yPBh")
25
+ #ngrok.set_auth_token("2UAqm26HuWiWvQjzK58xYufSGpy_6tStKSyLLyR9f7pcezh6R")
26
+ ngrok.set_auth_token("2UGQqzZoI3bx7SSk8H4wuFC3iaC_2WniWyNAsW5fd2rFyKVq1")
27
+
28
+
29
+ fasttext.FastText.eprint = lambda x: None
30
+
31
+ # Load the model and tokenizer ..... only once!
32
+ beam_size = 1 # change to a smaller value for faster inference
33
+ device = "cpu" # or "cuda"
34
+
35
+ # Language Prediction model
36
+ print("\nimporting Language Prediction model")
37
+ lang_model_file = "Sema/lid218e.bin"
38
+ lang_model_full_path = os.path.join(os.path.dirname(__file__), lang_model_file)
39
+ lang_model = fasttext.load_model(lang_model_full_path)
40
+
41
+
42
+ # Load the source SentencePiece model
43
+ print("\nimporting SentencePiece model")
44
+ sp_model_file = "Sema/spm.model"
45
+ sp_model_full_path = os.path.join(os.path.dirname(__file__), sp_model_file)
46
+ sp = spm.SentencePieceProcessor()
47
+ sp.load(sp_model_full_path)
48
+
49
+ # Import The Translator model
50
+ print("\nimporting Translator model")
51
+ ct_model_file = "Sema/sematrans-3.3B"
52
+ ct_model_full_path = os.path.join(os.path.dirname(__file__), ct_model_file)
53
+ translator = ctranslate2.Translator(ct_model_full_path, device)
54
+
55
+ print('\nDone importing models\n')
56
+
57
+
58
+ def translate_text(userinput: str, target_lang: str):
59
+ source_sents = [userinput]
60
+ source_sents = [sent.strip() for sent in source_sents]
61
+ target_prefix = [[target_lang]] * len(source_sents)
62
+
63
+ # Predict the source language
64
+ predictions = lang_model.predict(source_sents[0], k=1)
65
+ source_lang = predictions[0][0].replace('__label__', '')
66
+
67
+ # Subword the source sentences
68
+ source_sents_subworded = sp.encode(source_sents, out_type=str)
69
+ source_sents_subworded = [[source_lang] + sent + ["</s>"] for sent in source_sents_subworded]
70
+
71
+ # Translate the source sentences
72
+ translations = translator.translate_batch(
73
+ source_sents_subworded,
74
+ batch_type="tokens",
75
+ max_batch_size=2024,
76
+ beam_size=beam_size,
77
+ target_prefix=target_prefix,
78
+ )
79
+ translations = [translation[0]['tokens'] for translation in translations]
80
+
81
+ # Desubword the target sentences
82
+ translations_desubword = sp.decode(translations)
83
+ translations_desubword = [sent[len(target_lang):] for sent in translations_desubword]
84
+
85
+ # Return the source language and the translated text
86
+ return source_lang, translations_desubword
87
+
88
+
89
+ @app.get("/")
90
+ def read_root():
91
+ return {"message": "Welcome to the Sema Translation API! \nThis API was created by Lewsi Kamau Kimaru"}
92
+
93
+
94
+ @app.post("/translate/")
95
+ async def translate_endpoint(request: Request):
96
+ data = await request.json()
97
+ userinput = data.get("userinput")
98
+ target_lang = data.get("target_lang")
99
+ print(f"\n Target Language; {target_lang}, User Input: {userinput}\n")
100
+
101
+ if not userinput or not target_lang:
102
+ raise HTTPException(status_code=422, detail="Both 'userinput' and 'target_lang' are required.")
103
+
104
+ source_lang, translated_text = translate_text(userinput, target_lang)
105
+ print(f"\nsource_language: {source_lang}, Translated Text: {translated_text}\n\n")
106
+ return {
107
+ "source_language": source_lang,
108
+ "translated_text": translated_text[0],
109
+ }
110
+
111
+ ngrok_tunnel = ngrok.connect(7860)
112
+ public_url = ngrok_tunnel.public_url
113
+ print('\nPublic URL✅:', public_url)
114
+ nest_asyncio.apply()
115
+
116
+ print("\nAPI starting .......\n")
117
+ #uvicorn.run(app, port=7860)
modules/flores200_codes.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ codes_as_string = '''Acehnese (Arabic script) ace_Arab
2
+ Acehnese (Latin script) ace_Latn
3
+ Mesopotamian Arabic acm_Arab
4
+ Ta’izzi-Adeni Arabic acq_Arab
5
+ Tunisian Arabic aeb_Arab
6
+ Afrikaans afr_Latn
7
+ South Levantine Arabic ajp_Arab
8
+ Akan aka_Latn
9
+ Amharic amh_Ethi
10
+ North Levantine Arabic apc_Arab
11
+ Modern Standard Arabic arb_Arab
12
+ Modern Standard Arabic (Romanized) arb_Latn
13
+ Najdi Arabic ars_Arab
14
+ Moroccan Arabic ary_Arab
15
+ Egyptian Arabic arz_Arab
16
+ Assamese asm_Beng
17
+ Asturian ast_Latn
18
+ Awadhi awa_Deva
19
+ Central Aymara ayr_Latn
20
+ South Azerbaijani azb_Arab
21
+ North Azerbaijani azj_Latn
22
+ Bashkir bak_Cyrl
23
+ Bambara bam_Latn
24
+ Balinese ban_Latn
25
+ Belarusian bel_Cyrl
26
+ Bemba bem_Latn
27
+ Bengali ben_Beng
28
+ Bhojpuri bho_Deva
29
+ Banjar (Arabic script) bjn_Arab
30
+ Banjar (Latin script) bjn_Latn
31
+ Standard Tibetan bod_Tibt
32
+ Bosnian bos_Latn
33
+ Buginese bug_Latn
34
+ Bulgarian bul_Cyrl
35
+ Catalan cat_Latn
36
+ Cebuano ceb_Latn
37
+ Czech ces_Latn
38
+ Chokwe cjk_Latn
39
+ Central Kurdish ckb_Arab
40
+ Crimean Tatar crh_Latn
41
+ Welsh cym_Latn
42
+ Danish dan_Latn
43
+ German deu_Latn
44
+ Southwestern Dinka dik_Latn
45
+ Dyula dyu_Latn
46
+ Dzongkha dzo_Tibt
47
+ Greek ell_Grek
48
+ English eng_Latn
49
+ Esperanto epo_Latn
50
+ Estonian est_Latn
51
+ Basque eus_Latn
52
+ Ewe ewe_Latn
53
+ Faroese fao_Latn
54
+ Fijian fij_Latn
55
+ Finnish fin_Latn
56
+ Fon fon_Latn
57
+ French fra_Latn
58
+ Friulian fur_Latn
59
+ Nigerian Fulfulde fuv_Latn
60
+ Scottish Gaelic gla_Latn
61
+ Irish gle_Latn
62
+ Galician glg_Latn
63
+ Guarani grn_Latn
64
+ Gujarati guj_Gujr
65
+ Haitian Creole hat_Latn
66
+ Hausa hau_Latn
67
+ Hebrew heb_Hebr
68
+ Hindi hin_Deva
69
+ Chhattisgarhi hne_Deva
70
+ Croatian hrv_Latn
71
+ Hungarian hun_Latn
72
+ Armenian hye_Armn
73
+ Igbo ibo_Latn
74
+ Ilocano ilo_Latn
75
+ Indonesian ind_Latn
76
+ Icelandic isl_Latn
77
+ Italian ita_Latn
78
+ Javanese jav_Latn
79
+ Japanese jpn_Jpan
80
+ Kabyle kab_Latn
81
+ Jingpho kac_Latn
82
+ Kamba kam_Latn
83
+ Kannada kan_Knda
84
+ Kashmiri (Arabic script) kas_Arab
85
+ Kashmiri (Devanagari script) kas_Deva
86
+ Georgian kat_Geor
87
+ Central Kanuri (Arabic script) knc_Arab
88
+ Central Kanuri (Latin script) knc_Latn
89
+ Kazakh kaz_Cyrl
90
+ Kabiyè kbp_Latn
91
+ Kabuverdianu kea_Latn
92
+ Khmer khm_Khmr
93
+ Kikuyu kik_Latn
94
+ Kinyarwanda kin_Latn
95
+ Kyrgyz kir_Cyrl
96
+ Kimbundu kmb_Latn
97
+ Northern Kurdish kmr_Latn
98
+ Kikongo kon_Latn
99
+ Korean kor_Hang
100
+ Lao lao_Laoo
101
+ Ligurian lij_Latn
102
+ Limburgish lim_Latn
103
+ Lingala lin_Latn
104
+ Lithuanian lit_Latn
105
+ Lombard lmo_Latn
106
+ Latgalian ltg_Latn
107
+ Luxembourgish ltz_Latn
108
+ Luba-Kasai lua_Latn
109
+ Ganda lug_Latn
110
+ Luo luo_Latn
111
+ Mizo lus_Latn
112
+ Standard Latvian lvs_Latn
113
+ Magahi mag_Deva
114
+ Maithili mai_Deva
115
+ Malayalam mal_Mlym
116
+ Marathi mar_Deva
117
+ Minangkabau (Arabic script) min_Arab
118
+ Minangkabau (Latin script) min_Latn
119
+ Macedonian mkd_Cyrl
120
+ Plateau Malagasy plt_Latn
121
+ Maltese mlt_Latn
122
+ Meitei (Bengali script) mni_Beng
123
+ Halh Mongolian khk_Cyrl
124
+ Mossi mos_Latn
125
+ Maori mri_Latn
126
+ Burmese mya_Mymr
127
+ Dutch nld_Latn
128
+ Norwegian Nynorsk nno_Latn
129
+ Norwegian Bokmål nob_Latn
130
+ Nepali npi_Deva
131
+ Northern Sotho nso_Latn
132
+ Nuer nus_Latn
133
+ Nyanja nya_Latn
134
+ Occitan oci_Latn
135
+ West Central Oromo gaz_Latn
136
+ Odia ory_Orya
137
+ Pangasinan pag_Latn
138
+ Eastern Panjabi pan_Guru
139
+ Papiamento pap_Latn
140
+ Western Persian pes_Arab
141
+ Polish pol_Latn
142
+ Portuguese por_Latn
143
+ Dari prs_Arab
144
+ Southern Pashto pbt_Arab
145
+ Ayacucho Quechua quy_Latn
146
+ Romanian ron_Latn
147
+ Rundi run_Latn
148
+ Russian rus_Cyrl
149
+ Sango sag_Latn
150
+ Sanskrit san_Deva
151
+ Santali sat_Olck
152
+ Sicilian scn_Latn
153
+ Shan shn_Mymr
154
+ Sinhala sin_Sinh
155
+ Slovak slk_Latn
156
+ Slovenian slv_Latn
157
+ Samoan smo_Latn
158
+ Shona sna_Latn
159
+ Sindhi snd_Arab
160
+ Somali som_Latn
161
+ Southern Sotho sot_Latn
162
+ Spanish spa_Latn
163
+ Tosk Albanian als_Latn
164
+ Sardinian srd_Latn
165
+ Serbian srp_Cyrl
166
+ Swati ssw_Latn
167
+ Sundanese sun_Latn
168
+ Swedish swe_Latn
169
+ Swahili swh_Latn
170
+ Silesian szl_Latn
171
+ Tamil tam_Taml
172
+ Tatar tat_Cyrl
173
+ Telugu tel_Telu
174
+ Tajik tgk_Cyrl
175
+ Tagalog tgl_Latn
176
+ Thai tha_Thai
177
+ Tigrinya tir_Ethi
178
+ Tamasheq (Latin script) taq_Latn
179
+ Tamasheq (Tifinagh script) taq_Tfng
180
+ Tok Pisin tpi_Latn
181
+ Tswana tsn_Latn
182
+ Tsonga tso_Latn
183
+ Turkmen tuk_Latn
184
+ Tumbuka tum_Latn
185
+ Turkish tur_Latn
186
+ Twi twi_Latn
187
+ Central Atlas Tamazight tzm_Tfng
188
+ Uyghur uig_Arab
189
+ Ukrainian ukr_Cyrl
190
+ Umbundu umb_Latn
191
+ Urdu urd_Arab
192
+ Northern Uzbek uzn_Latn
193
+ Venetian vec_Latn
194
+ Vietnamese vie_Latn
195
+ Waray war_Latn
196
+ Wolof wol_Latn
197
+ Xhosa xho_Latn
198
+ Eastern Yiddish ydd_Hebr
199
+ Yoruba yor_Latn
200
+ Yue Chinese yue_Hant
201
+ Chinese (Simplified) zho_Hans
202
+ Chinese (Traditional) zho_Hant
203
+ Standard Malay zsm_Latn
204
+ Zulu zul_Latn'''
205
+
206
+ codes_as_string = codes_as_string.split('\n')
207
+
208
+ flores_codes = {}
209
+ for code in codes_as_string:
210
+ lang, lang_code = code.split('\t')
211
+ flores_codes[lang] = lang_code