Spaces:
Runtime error
Runtime error
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification | |
import gradio as gr | |
import os | |
auth_token = os.environ.get("HF_Token") | |
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h") | |
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY") | |
tokenizer = AutoTokenizer.from_pretrained("demo-org/auditor_review_model",use_auth_token=auth_token) | |
audit_model = AutoModelForSequenceClassification.from_pretrained("demo-org/auditor_review_model",use_auth_token=auth_token) | |
nlp = pipeline("text-classification", model=audit_model, tokenizer=tokenizer) | |
def transcribe(audio): | |
text = asr(audio)["text"] | |
return text | |
def speech_to_text(speech): | |
text = asr(speech)["text"] | |
return text | |
def summarize_text(text): | |
stext = summarizer(text) | |
return stext | |
def text_to_sentiment(text): | |
sentiment = nlp(text)[0]["label"] | |
return sentiment | |
def ner(text): | |
api = gr.Interface.load("dslim/bert-base-NER", src='models') | |
spans = api(text) | |
#replaced_spans = [(key, None) if value=='No Disease' else (key, value) for (key, value) in spans] | |
return spans | |
demo = gr.Blocks() | |
with demo: | |
audio_file = gr.inputs.Audio(source="microphone", type="filepath") | |
b1 = gr.Button("Recognize Speech") | |
text = gr.Textbox() | |
b1.click(speech_to_text, inputs=audio_file, outputs=text) | |
b2 = gr.Button("Summarize Text") | |
stext = gr.Textbox() | |
b2.click(summarize_text, inputs=text, outputs=stext) | |
b3 = gr.Button("Classify Sentiment") | |
label = gr.Label() | |
b3.click(text_to_sentiment, inputs=stext, outputs=label) | |
b4 = gr.Button("Extract Companies & Segments") | |
replaced_spans = gr.HighlightedText() | |
b4.click(ner, inputs=text, outputs=replaced_spans) | |
demo.launch(share=True) |