File size: 5,825 Bytes
b3f2e04
9405fcc
 
400833e
01de3f3
e9ee4ce
7aed1b6
 
 
 
 
 
0a12cf5
9405fcc
 
 
 
 
 
 
7aed1b6
9405fcc
7aed1b6
 
9405fcc
e9ee4ce
9405fcc
 
 
02001b9
9405fcc
7aed1b6
b7236f0
0a12cf5
 
a29b766
 
9405fcc
 
07eca3d
2ba3409
9405fcc
 
 
2ba3409
9405fcc
 
 
 
 
7d6469d
0a12cf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b46ae9a
 
 
 
 
dab883f
9405fcc
edd0581
 
 
b46ae9a
edd0581
 
bc798f6
 
 
 
0a12cf5
bc798f6
 
 
b46ae9a
a601a45
b46ae9a
 
 
a47abbb
dab883f
 
b46ae9a
 
7aed1b6
 
b46ae9a
 
 
 
 
 
 
 
 
 
 
 
 
4a7ad4a
 
bd650f6
 
4a7ad4a
7aed1b6
 
9405fcc
 
 
 
d0bf66f
9405fcc
 
 
 
7aed1b6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import gradio as gr
from random import randint
from all_models import models

from externalmod import gr_Interface_load

import asyncio
import os
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.


def load_fn(models):
    global models_load
    models_load = {}
    
    for model in models:
        if model not in models_load.keys():
            try:
                m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
            except Exception as error:
                print(error)
                m = gr.Interface(lambda: None, ['text'], ['image'])
            models_load.update({model: m})

load_fn(models)


num_models = 1
default_models = models[:num_models]
inference_timeout = 600

MAX_SEED=3999999999



def extend_choices(choices):
    return choices + (num_models - len(choices)) * ['NA']


def update_imgbox(choices):
    choices_plus = extend_choices(choices)
    return [gr.Image(None, label = m, visible = (m != 'NA')) for m in choices_plus]

def gen_fn(model_str, prompt):
    if model_str == 'NA':
        return None
    noise = str('') #str(randint(0, 99999999999))
    return models_load[model_str](f'{prompt} {noise}')









async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
    from pathlib import Path
    kwargs = {}
    noise = ""
    kwargs["seed"] = seed
    task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
                               prompt=f'{prompt} {noise}', **kwargs, token=HF_TOKEN))
    await asyncio.sleep(0)
    try:
        result = await asyncio.wait_for(task, timeout=timeout)
    except (Exception, asyncio.TimeoutError) as e:
        print(e)
        print(f"Task timed out: {model_str}")
        if not task.done(): task.cancel()
        result = None
    if task.done() and result is not None:
        with lock:
            png_path = "image.png"
            result.save(png_path)
            image = str(Path(png_path).resolve())
        return image
    return None

def gen_fnseed(model_str, prompt, seed=1):
    if model_str == 'NA':
        return None
    try:
        loop = asyncio.new_event_loop()
        result = loop.run_until_complete(infer(model_str, prompt, seed, inference_timeout))
    except (Exception, asyncio.CancelledError) as e:
        print(e)
        print(f"Task aborted: {model_str}")
        result = None
    finally:
        loop.close()
    return result

def gen_fnsix(model_str, prompt):
    if model_str == 'NA':
        return None
    noisesix = str(randint(1941, 2023)) #str(randint(0, 99999999999))
    return models_load[model_str](f'{prompt} {noisesix}')

with gr.Blocks() as demo:
    gr.HTML(
    """
        <div>
        <p> <center><img src="https://huggingface.co./Yntec/OpenGenDiffusers/resolve/main/pp.png" style="height:128px; width:482px; margin-top: -22px; margin-bottom: -44px;" span title="Free ai art image generator Printing Press"></center>
        </p>
    """
)
    gr.HTML(
    """
        <div>
        <p> <center>For negative prompts, Width and Height, and other features visit John6666's <a href="https://huggingface.co./spaces/John6666/PrintingPress4">Printing Press 4</a>!</center>
        </p></div>
    """
)  
    with gr.Tab('Up To Six'):
        model_choice2 = gr.Dropdown(models, label = f'Choose a model from the {len(models)} available! Try clearing the box and typing on it to filter them!', value = models[0], filterable = True)
        txt_input2 = gr.Textbox(label = 'Your prompt:')
        
        max_images = 6
        num_images = gr.Slider(1, max_images, value = max_images, step = 1, label = 'Number of images (if you want less than 6 decrease them slowly until they match the boxes below)')
        width_images = gr.Slider(128, 1440, value = 1024, step = 32, label = 'Image width')
        height_images = gr.Slider(128, 1440, value = 1024, step = 32, label = 'Image height')
        
        gen_button2 = gr.Button('Generate up to 6 images in up to 3 minutes total')
        #stop_button2 = gr.Button('Stop', variant = 'secondary', interactive = False)
        gen_button2.click(lambda s: gr.update(interactive = True), None)
        gr.HTML(
        """
            <div style="text-align: center; max-width: 1200px; margin: 0 auto;">
              <div>
                <body>
                <div class="center"><p style="margin-bottom: 10px; color: #000000;">Scroll down to see more images (they generate in a random order).</p>
                </div>
                </body>
              </div>
            </div>
        """
               )
        with gr.Column():
            output2 = [gr.Image(label = '') for _ in range(max_images)]

        for i, o in enumerate(output2):
            img_i = gr.Number(i, visible = False)
            num_images.change(lambda i, n: gr.update(visible = (i < n)), [img_i, num_images], o, show_progress = False)
            gen_event2 = gen_button2.click(lambda i, n, m, t: gen_fnsix(m, t) if (i < n) else None, [img_i, num_images, model_choice2, txt_input2], o, concurrency_limit=None, queue=False)
            #stop_button2.click(lambda s: gr.update(interactive = False), None, stop_button2, cancels = [gen_event2])
        with gr.Row():
            gr.HTML(
    """
        <div class="footer">
        <p> Based on the <a href="https://huggingface.co./spaces/derwahnsinn/TestGen">TestGen</a> Space by derwahnsinn, the <a href="https://huggingface.co./spaces/RdnUser77/SpacIO_v1">SpacIO</a> Space by RdnUser77, Omnibus's Maximum Multiplier and <a href="https://huggingface.co./spaces/Yntec/ToyWorld">Toy World</a>!
        </p>
    """
)

demo.queue(default_concurrency_limit=200, max_size=200)
demo.launch(show_api=False, max_threads=400)