""" Entrypoint for the CLI tool. This module serves as the entry point for a command-line interface (CLI) tool. It is designed to interact with OpenAI's language models. The module provides functionality to: - Load necessary environment variables, - Configure various parameters for the AI interaction, - Manage the generation or improvement of code projects. Main Functionality ------------------ - Load environment variables required for OpenAI API interaction. - Parse user-specified parameters for project configuration and AI behavior. - Facilitate interaction with AI models, databases, and archival processes. Parameters ---------- None Notes ----- - The `OPENAI_API_KEY` must be set in the environment or provided in a `.env` file within the working directory. - The default project path is `projects/example`. - When using the `azure_endpoint` parameter, provide the Azure OpenAI service endpoint URL. """ import difflib import json import logging import os import platform import subprocess import sys from pathlib import Path import openai import typer from dotenv import load_dotenv from langchain.globals import set_llm_cache from langchain_community.cache import SQLiteCache from termcolor import colored from gpt_engineer.applications.cli.cli_agent import CliAgent from gpt_engineer.applications.cli.collect import collect_and_send_human_review from gpt_engineer.applications.cli.file_selector import FileSelector from gpt_engineer.core.ai import AI, ClipboardAI from gpt_engineer.core.default.disk_execution_env import DiskExecutionEnv from gpt_engineer.core.default.disk_memory import DiskMemory from gpt_engineer.core.default.file_store import FileStore from gpt_engineer.core.default.paths import PREPROMPTS_PATH, memory_path from gpt_engineer.core.default.steps import ( execute_entrypoint, gen_code, handle_improve_mode, improve_fn as improve_fn, ) from gpt_engineer.core.files_dict import FilesDict from gpt_engineer.core.git import stage_uncommitted_to_git from gpt_engineer.core.preprompts_holder import PrepromptsHolder from gpt_engineer.core.prompt import Prompt from gpt_engineer.tools.custom_steps import clarified_gen, lite_gen, self_heal app = typer.Typer( context_settings={"help_option_names": ["-h", "--help"]} ) # creates a CLI app def load_env_if_needed(): """ Load environment variables if the OPENAI_API_KEY is not already set. This function checks if the OPENAI_API_KEY environment variable is set, and if not, it attempts to load it from a .env file in the current working directory. It then sets the openai.api_key for use in the application. """ # We have all these checks for legacy reasons... if os.getenv("OPENAI_API_KEY") is None: load_dotenv() if os.getenv("OPENAI_API_KEY") is None: load_dotenv(dotenv_path=os.path.join(os.getcwd(), ".env")) openai.api_key = os.getenv("OPENAI_API_KEY") if os.getenv("ANTHROPIC_API_KEY") is None: load_dotenv() if os.getenv("ANTHROPIC_API_KEY") is None: load_dotenv(dotenv_path=os.path.join(os.getcwd(), ".env")) def concatenate_paths(base_path, sub_path): # Compute the relative path from base_path to sub_path relative_path = os.path.relpath(sub_path, base_path) # If the relative path is not in the parent directory, use the original sub_path if not relative_path.startswith(".."): return sub_path # Otherwise, concatenate base_path and sub_path return os.path.normpath(os.path.join(base_path, sub_path)) def load_prompt( input_repo: DiskMemory, improve_mode: bool, prompt_file: str, image_directory: str, entrypoint_prompt_file: str = "", ) -> Prompt: """ Load or request a prompt from the user based on the mode. Parameters ---------- input_repo : DiskMemory The disk memory object where prompts and other data are stored. improve_mode : bool Flag indicating whether the application is in improve mode. Returns ------- str The loaded or inputted prompt. """ if os.path.isdir(prompt_file): raise ValueError( f"The path to the prompt, {prompt_file}, already exists as a directory. No prompt can be read from it. Please specify a prompt file using --prompt_file" ) prompt_str = input_repo.get(prompt_file) if prompt_str: print(colored("Using prompt from file:", "green"), prompt_file) print(prompt_str) else: if not improve_mode: prompt_str = input( "\nWhat application do you want gpt-engineer to generate?\n" ) else: prompt_str = input("\nHow do you want to improve the application?\n") if entrypoint_prompt_file == "": entrypoint_prompt = "" else: full_entrypoint_prompt_file = concatenate_paths( input_repo.path, entrypoint_prompt_file ) if os.path.isfile(full_entrypoint_prompt_file): entrypoint_prompt = input_repo.get(full_entrypoint_prompt_file) else: raise ValueError("The provided file at --entrypoint-prompt does not exist") if image_directory == "": return Prompt(prompt_str, entrypoint_prompt=entrypoint_prompt) full_image_directory = concatenate_paths(input_repo.path, image_directory) if os.path.isdir(full_image_directory): if len(os.listdir(full_image_directory)) == 0: raise ValueError("The provided --image_directory is empty.") image_repo = DiskMemory(full_image_directory) return Prompt( prompt_str, image_repo.get(".").to_dict(), entrypoint_prompt=entrypoint_prompt, ) else: raise ValueError("The provided --image_directory is not a directory.") def get_preprompts_path(use_custom_preprompts: bool, input_path: Path) -> Path: """ Get the path to the preprompts, using custom ones if specified. Parameters ---------- use_custom_preprompts : bool Flag indicating whether to use custom preprompts. input_path : Path The path to the project directory. Returns ------- Path The path to the directory containing the preprompts. """ original_preprompts_path = PREPROMPTS_PATH if not use_custom_preprompts: return original_preprompts_path custom_preprompts_path = input_path / "preprompts" if not custom_preprompts_path.exists(): custom_preprompts_path.mkdir() for file in original_preprompts_path.glob("*"): if not (custom_preprompts_path / file.name).exists(): (custom_preprompts_path / file.name).write_text(file.read_text()) return custom_preprompts_path def compare(f1: FilesDict, f2: FilesDict): def colored_diff(s1, s2): lines1 = s1.splitlines() lines2 = s2.splitlines() diff = difflib.unified_diff(lines1, lines2, lineterm="") RED = "\033[38;5;202m" GREEN = "\033[92m" RESET = "\033[0m" colored_lines = [] for line in diff: if line.startswith("+"): colored_lines.append(GREEN + line + RESET) elif line.startswith("-"): colored_lines.append(RED + line + RESET) else: colored_lines.append(line) return "\n".join(colored_lines) for file in sorted(set(f1) | set(f2)): diff = colored_diff(f1.get(file, ""), f2.get(file, "")) if diff: print(f"Changes to {file}:") print(diff) def prompt_yesno() -> bool: TERM_CHOICES = colored("y", "green") + "/" + colored("n", "red") + " " while True: response = input(TERM_CHOICES).strip().lower() if response in ["y", "yes"]: return True if response in ["n", "no"]: break print("Please respond with 'y' or 'n'") def get_system_info(): system_info = { "os": platform.system(), "os_version": platform.version(), "architecture": platform.machine(), "python_version": sys.version, "packages": format_installed_packages(get_installed_packages()), } return system_info def get_installed_packages(): try: result = subprocess.run( [sys.executable, "-m", "pip", "list", "--format=json"], capture_output=True, text=True, ) packages = json.loads(result.stdout) return {pkg["name"]: pkg["version"] for pkg in packages} except Exception as e: return str(e) def format_installed_packages(packages): return "\n".join([f"{name}: {version}" for name, version in packages.items()]) @app.command( help=""" GPT-engineer lets you: \b - Specify a software in natural language - Sit back and watch as an AI writes and executes the code - Ask the AI to implement improvements """ ) def main( project_path: str = typer.Argument(".", help="path"), model: str = typer.Option( os.environ.get("MODEL_NAME", "gpt-4o"), "--model", "-m", help="model id string" ), temperature: float = typer.Option( 0.1, "--temperature", "-t", help="Controls randomness: lower values for more focused, deterministic outputs", ), improve_mode: bool = typer.Option( False, "--improve", "-i", help="Improve an existing project by modifying the files.", ), lite_mode: bool = typer.Option( False, "--lite", "-l", help="Lite mode: run a generation using only the main prompt.", ), clarify_mode: bool = typer.Option( False, "--clarify", "-c", help="Clarify mode - discuss specification with AI before implementation.", ), self_heal_mode: bool = typer.Option( False, "--self-heal", "-sh", help="Self-heal mode - fix the code by itself when it fails.", ), azure_endpoint: str = typer.Option( "", "--azure", "-a", help="""Endpoint for your Azure OpenAI Service (https://xx.openai.azure.com). In that case, the given model is the deployment name chosen in the Azure AI Studio.""", ), use_custom_preprompts: bool = typer.Option( False, "--use-custom-preprompts", help="""Use your project's custom preprompts instead of the default ones. Copies all original preprompts to the project's workspace if they don't exist there.""", ), llm_via_clipboard: bool = typer.Option( False, "--llm-via-clipboard", help="Use the clipboard to communicate with the AI.", ), verbose: bool = typer.Option( False, "--verbose", "-v", help="Enable verbose logging for debugging." ), debug: bool = typer.Option( False, "--debug", "-d", help="Enable debug mode for debugging." ), prompt_file: str = typer.Option( "prompt", "--prompt_file", help="Relative path to a text file containing a prompt.", ), entrypoint_prompt_file: str = typer.Option( "", "--entrypoint_prompt", help="Relative path to a text file containing a file that specifies requirements for you entrypoint.", ), image_directory: str = typer.Option( "", "--image_directory", help="Relative path to a folder containing images.", ), use_cache: bool = typer.Option( False, "--use_cache", help="Speeds up computations and saves tokens when running the same prompt multiple times by caching the LLM response.", ), no_execution: bool = typer.Option( False, "--no_execution", help="Run setup but to not call LLM or write any code. For testing purposes.", ), sysinfo: bool = typer.Option( False, "--sysinfo", help="Output system information for debugging", ), ): """ The main entry point for the CLI tool that generates or improves a project. This function sets up the CLI tool, loads environment variables, initializes the AI, and processes the user's request to generate or improve a project based on the provided arguments. Parameters ---------- project_path : str The file path to the project directory. model : str The model ID string for the AI. temperature : float The temperature setting for the AI's responses. improve_mode : bool Flag indicating whether to improve an existing project. lite_mode : bool Flag indicating whether to run in lite mode. clarify_mode : bool Flag indicating whether to discuss specifications with AI before implementation. self_heal_mode : bool Flag indicating whether to enable self-healing mode. azure_endpoint : str The endpoint for Azure OpenAI services. use_custom_preprompts : bool Flag indicating whether to use custom preprompts. prompt_file : str Relative path to a text file containing a prompt. entrypoint_prompt_file: str Relative path to a text file containing a file that specifies requirements for you entrypoint. image_directory: str Relative path to a folder containing images. use_cache: bool Speeds up computations and saves tokens when running the same prompt multiple times by caching the LLM response. verbose : bool Flag indicating whether to enable verbose logging. no_execution: bool Run setup but to not call LLM or write any code. For testing purposes. sysinfo: bool Flag indicating whether to output system information for debugging. Returns ------- None """ if debug: import pdb sys.excepthook = lambda *_: pdb.pm() if sysinfo: sys_info = get_system_info() for key, value in sys_info.items(): print(f"{key}: {value}") raise typer.Exit() # Validate arguments if improve_mode and (clarify_mode or lite_mode): typer.echo("Error: Clarify and lite mode are not compatible with improve mode.") raise typer.Exit(code=1) # Set up logging logging.basicConfig(level=logging.DEBUG if verbose else logging.INFO) if use_cache: set_llm_cache(SQLiteCache(database_path=".langchain.db")) if improve_mode: assert not ( clarify_mode or lite_mode ), "Clarify and lite mode are not active for improve mode" load_env_if_needed() if llm_via_clipboard: ai = ClipboardAI() else: ai = AI( model_name=model, temperature=temperature, azure_endpoint=azure_endpoint, ) path = Path(project_path) print("Running gpt-engineer in", path.absolute(), "\n") prompt = load_prompt( DiskMemory(path), improve_mode, prompt_file, image_directory, entrypoint_prompt_file, ) # todo: if ai.vision is false and not llm_via_clipboard - ask if they would like to use gpt-4-vision-preview instead? If so recreate AI if not ai.vision: prompt.image_urls = None # configure generation function if clarify_mode: code_gen_fn = clarified_gen elif lite_mode: code_gen_fn = lite_gen else: code_gen_fn = gen_code # configure execution function if self_heal_mode: execution_fn = self_heal else: execution_fn = execute_entrypoint preprompts_holder = PrepromptsHolder( get_preprompts_path(use_custom_preprompts, Path(project_path)) ) memory = DiskMemory(memory_path(project_path)) memory.archive_logs() execution_env = DiskExecutionEnv() agent = CliAgent.with_default_config( memory, execution_env, ai=ai, code_gen_fn=code_gen_fn, improve_fn=improve_fn, process_code_fn=execution_fn, preprompts_holder=preprompts_holder, ) files = FileStore(project_path) if not no_execution: if improve_mode: files_dict_before, is_linting = FileSelector(project_path).ask_for_files() # lint the code if is_linting: files_dict_before = files.linting(files_dict_before) files_dict = handle_improve_mode(prompt, agent, memory, files_dict_before) if not files_dict or files_dict_before == files_dict: print( f"No changes applied. Could you please upload the debug_log_file.txt in {memory.path}/logs folder in a github issue?" ) else: print("\nChanges to be made:") compare(files_dict_before, files_dict) print() print(colored("Do you want to apply these changes?", "light_green")) if not prompt_yesno(): files_dict = files_dict_before else: files_dict = agent.init(prompt) # collect user feedback if user consents config = (code_gen_fn.__name__, execution_fn.__name__) collect_and_send_human_review(prompt, model, temperature, config, memory) stage_uncommitted_to_git(path, files_dict, improve_mode) files.push(files_dict) if ai.token_usage_log.is_openai_model(): print("Total api cost: $ ", ai.token_usage_log.usage_cost()) elif os.getenv("LOCAL_MODEL"): print("Total api cost: $ 0.0 since we are using local LLM.") else: print("Total tokens used: ", ai.token_usage_log.total_tokens()) if __name__ == "__main__": app()