|
""" |
|
Module for defining the steps involved in generating and improving code using AI. |
|
|
|
This module provides functions that represent different steps in the process of generating |
|
and improving code using an AI model. These steps include generating code from a prompt, |
|
creating an entrypoint for the codebase, executing the entrypoint, and refining code edits. |
|
|
|
Functions |
|
--------- |
|
curr_fn : function |
|
Returns the name of the current function. |
|
|
|
setup_sys_prompt : function |
|
Sets up the system prompt for generating code. |
|
|
|
gen_code : function |
|
Generates code from a prompt using AI and returns the generated files. |
|
|
|
gen_entrypoint : function |
|
Generates an entrypoint for the codebase and returns the entrypoint files. |
|
|
|
execute_entrypoint : function |
|
Executes the entrypoint of the codebase. |
|
|
|
setup_sys_prompt_existing_code : function |
|
Sets up the system prompt for improving existing code. |
|
|
|
|
|
improve : function |
|
Improves the code based on user input and returns the updated files. |
|
""" |
|
|
|
import inspect |
|
import io |
|
import re |
|
import sys |
|
import traceback |
|
|
|
from pathlib import Path |
|
from typing import List, MutableMapping, Union |
|
|
|
from langchain.schema import HumanMessage, SystemMessage |
|
from termcolor import colored |
|
|
|
from gpt_engineer.core.ai import AI |
|
from gpt_engineer.core.base_execution_env import BaseExecutionEnv |
|
from gpt_engineer.core.base_memory import BaseMemory |
|
from gpt_engineer.core.chat_to_files import apply_diffs, chat_to_files_dict, parse_diffs |
|
from gpt_engineer.core.default.constants import MAX_EDIT_REFINEMENT_STEPS |
|
from gpt_engineer.core.default.paths import ( |
|
CODE_GEN_LOG_FILE, |
|
DEBUG_LOG_FILE, |
|
DIFF_LOG_FILE, |
|
ENTRYPOINT_FILE, |
|
ENTRYPOINT_LOG_FILE, |
|
IMPROVE_LOG_FILE, |
|
) |
|
from gpt_engineer.core.files_dict import FilesDict, file_to_lines_dict |
|
from gpt_engineer.core.preprompts_holder import PrepromptsHolder |
|
from gpt_engineer.core.prompt import Prompt |
|
|
|
|
|
def curr_fn() -> str: |
|
""" |
|
Returns the name of the current function. |
|
|
|
Returns |
|
------- |
|
str |
|
The name of the function that called this function. |
|
""" |
|
return inspect.stack()[1].function |
|
|
|
|
|
def setup_sys_prompt(preprompts: MutableMapping[Union[str, Path], str]) -> str: |
|
""" |
|
Sets up the system prompt for generating code. |
|
|
|
Parameters |
|
---------- |
|
preprompts : MutableMapping[Union[str, Path], str] |
|
A mapping of preprompt messages to guide the AI model. |
|
|
|
Returns |
|
------- |
|
str |
|
The system prompt message for the AI model. |
|
""" |
|
return ( |
|
preprompts["roadmap"] |
|
+ preprompts["generate"].replace("FILE_FORMAT", preprompts["file_format"]) |
|
+ "\nUseful to know:\n" |
|
+ preprompts["philosophy"] |
|
) |
|
|
|
|
|
def setup_sys_prompt_existing_code( |
|
preprompts: MutableMapping[Union[str, Path], str] |
|
) -> str: |
|
""" |
|
Sets up the system prompt for improving existing code. |
|
|
|
Parameters |
|
---------- |
|
preprompts : MutableMapping[Union[str, Path], str] |
|
A mapping of preprompt messages to guide the AI model. |
|
|
|
Returns |
|
------- |
|
str |
|
The system prompt message for the AI model to improve existing code. |
|
""" |
|
return ( |
|
preprompts["roadmap"] |
|
+ preprompts["improve"].replace("FILE_FORMAT", preprompts["file_format_diff"]) |
|
+ "\nUseful to know:\n" |
|
+ preprompts["philosophy"] |
|
) |
|
|
|
|
|
def gen_code( |
|
ai: AI, prompt: Prompt, memory: BaseMemory, preprompts_holder: PrepromptsHolder |
|
) -> FilesDict: |
|
""" |
|
Generates code from a prompt using AI and returns the generated files. |
|
|
|
Parameters |
|
---------- |
|
ai : AI |
|
The AI model used for generating code. |
|
prompt : str |
|
The user prompt to generate code from. |
|
memory : BaseMemory |
|
The memory interface where the code and related data are stored. |
|
preprompts_holder : PrepromptsHolder |
|
The holder for preprompt messages that guide the AI model. |
|
|
|
Returns |
|
------- |
|
FilesDict |
|
A dictionary of file names to their respective source code content. |
|
""" |
|
preprompts = preprompts_holder.get_preprompts() |
|
messages = ai.start( |
|
setup_sys_prompt(preprompts), prompt.to_langchain_content(), step_name=curr_fn() |
|
) |
|
chat = messages[-1].content.strip() |
|
memory.log(CODE_GEN_LOG_FILE, "\n\n".join(x.pretty_repr() for x in messages)) |
|
files_dict = chat_to_files_dict(chat) |
|
return files_dict |
|
|
|
|
|
def gen_entrypoint( |
|
ai: AI, |
|
prompt: Prompt, |
|
files_dict: FilesDict, |
|
memory: BaseMemory, |
|
preprompts_holder: PrepromptsHolder, |
|
) -> FilesDict: |
|
""" |
|
Generates an entrypoint for the codebase and returns the entrypoint files. |
|
|
|
Parameters |
|
---------- |
|
ai : AI |
|
The AI model used for generating the entrypoint. |
|
files_dict : FilesDict |
|
The dictionary of file names to their respective source code content. |
|
memory : BaseMemory |
|
The memory interface where the code and related data are stored. |
|
preprompts_holder : PrepromptsHolder |
|
The holder for preprompt messages that guide the AI model. |
|
|
|
Returns |
|
------- |
|
FilesDict |
|
A dictionary containing the entrypoint file. |
|
""" |
|
user_prompt = prompt.entrypoint_prompt |
|
if not user_prompt: |
|
user_prompt = """ |
|
Make a unix script that |
|
a) installs dependencies |
|
b) runs all necessary parts of the codebase (in parallel if necessary) |
|
""" |
|
preprompts = preprompts_holder.get_preprompts() |
|
messages = ai.start( |
|
system=(preprompts["entrypoint"]), |
|
user=user_prompt |
|
+ "\nInformation about the codebase:\n\n" |
|
+ files_dict.to_chat(), |
|
step_name=curr_fn(), |
|
) |
|
print() |
|
chat = messages[-1].content.strip() |
|
regex = r"```\S*\n(.+?)```" |
|
matches = re.finditer(regex, chat, re.DOTALL) |
|
entrypoint_code = FilesDict( |
|
{ENTRYPOINT_FILE: "\n".join(match.group(1) for match in matches)} |
|
) |
|
memory.log(ENTRYPOINT_LOG_FILE, "\n\n".join(x.pretty_repr() for x in messages)) |
|
return entrypoint_code |
|
|
|
|
|
def execute_entrypoint( |
|
ai: AI, |
|
execution_env: BaseExecutionEnv, |
|
files_dict: FilesDict, |
|
prompt: Prompt = None, |
|
preprompts_holder: PrepromptsHolder = None, |
|
memory: BaseMemory = None, |
|
) -> FilesDict: |
|
""" |
|
Executes the entrypoint of the codebase. |
|
|
|
Parameters |
|
---------- |
|
ai : AI |
|
The AI model used for generating the entrypoint. |
|
execution_env : BaseExecutionEnv |
|
The execution environment in which the code is executed. |
|
files_dict : FilesDict |
|
The dictionary of file names to their respective source code content. |
|
preprompts_holder : PrepromptsHolder, optional |
|
The holder for preprompt messages that guide the AI model. |
|
|
|
Returns |
|
------- |
|
FilesDict |
|
The dictionary of file names to their respective source code content after execution. |
|
""" |
|
if ENTRYPOINT_FILE not in files_dict: |
|
raise FileNotFoundError( |
|
"The required entrypoint " |
|
+ ENTRYPOINT_FILE |
|
+ " does not exist in the code." |
|
) |
|
|
|
command = files_dict[ENTRYPOINT_FILE] |
|
|
|
print() |
|
print( |
|
colored( |
|
"Do you want to execute this code? (Y/n)", |
|
"red", |
|
) |
|
) |
|
print() |
|
print(command) |
|
print() |
|
if input("").lower() not in ["", "y", "yes"]: |
|
print("Ok, not executing the code.") |
|
return files_dict |
|
print("Executing the code...") |
|
print() |
|
print( |
|
colored( |
|
"Note: If it does not work as expected, consider running the code" |
|
+ " in another way than above.", |
|
"green", |
|
) |
|
) |
|
print() |
|
print("You can press ctrl+c *once* to stop the execution.") |
|
print() |
|
|
|
execution_env.upload(files_dict).run(f"bash {ENTRYPOINT_FILE}") |
|
return files_dict |
|
|
|
|
|
def improve_fn( |
|
ai: AI, |
|
prompt: Prompt, |
|
files_dict: FilesDict, |
|
memory: BaseMemory, |
|
preprompts_holder: PrepromptsHolder, |
|
) -> FilesDict: |
|
""" |
|
Improves the code based on user input and returns the updated files. |
|
|
|
Parameters |
|
---------- |
|
ai : AI |
|
The AI model used for improving code. |
|
prompt :str |
|
The user prompt to improve the code. |
|
files_dict : FilesDict |
|
The dictionary of file names to their respective source code content. |
|
memory : BaseMemory |
|
The memory interface where the code and related data are stored. |
|
preprompts_holder : PrepromptsHolder |
|
The holder for preprompt messages that guide the AI model. |
|
|
|
Returns |
|
------- |
|
FilesDict |
|
The dictionary of file names to their respective updated source code content. |
|
""" |
|
preprompts = preprompts_holder.get_preprompts() |
|
messages = [ |
|
SystemMessage(content=setup_sys_prompt_existing_code(preprompts)), |
|
] |
|
|
|
|
|
messages.append(HumanMessage(content=f"{files_dict.to_chat()}")) |
|
messages.append(HumanMessage(content=prompt.to_langchain_content())) |
|
memory.log( |
|
DEBUG_LOG_FILE, |
|
"UPLOADED FILES:\n" + files_dict.to_log() + "\nPROMPT:\n" + prompt.text, |
|
) |
|
return _improve_loop(ai, files_dict, memory, messages) |
|
|
|
|
|
def _improve_loop( |
|
ai: AI, files_dict: FilesDict, memory: BaseMemory, messages: List |
|
) -> FilesDict: |
|
messages = ai.next(messages, step_name=curr_fn()) |
|
files_dict, errors = salvage_correct_hunks(messages, files_dict, memory) |
|
|
|
retries = 0 |
|
while errors and retries < MAX_EDIT_REFINEMENT_STEPS: |
|
messages.append( |
|
HumanMessage( |
|
content="Some previously produced diffs were not on the requested format, or the code part was not found in the code. Details:\n" |
|
+ "\n".join(errors) |
|
+ "\n Only rewrite the problematic diffs, making sure that the failing ones are now on the correct format and can be found in the code. Make sure to not repeat past mistakes. \n" |
|
) |
|
) |
|
messages = ai.next(messages, step_name=curr_fn()) |
|
files_dict, errors = salvage_correct_hunks(messages, files_dict, memory) |
|
retries += 1 |
|
|
|
return files_dict |
|
|
|
|
|
def salvage_correct_hunks( |
|
messages: List, |
|
files_dict: FilesDict, |
|
memory: BaseMemory, |
|
) -> tuple[FilesDict, List[str]]: |
|
error_messages = [] |
|
ai_response = messages[-1].content.strip() |
|
|
|
diffs = parse_diffs(ai_response) |
|
|
|
|
|
for _, diff in diffs.items(): |
|
|
|
if not diff.is_new_file(): |
|
problems = diff.validate_and_correct( |
|
file_to_lines_dict(files_dict[diff.filename_pre]) |
|
) |
|
error_messages.extend(problems) |
|
files_dict = apply_diffs(diffs, files_dict) |
|
memory.log(IMPROVE_LOG_FILE, "\n\n".join(x.pretty_repr() for x in messages)) |
|
memory.log(DIFF_LOG_FILE, "\n\n".join(error_messages)) |
|
return files_dict, error_messages |
|
|
|
|
|
class Tee(object): |
|
def __init__(self, *files): |
|
self.files = files |
|
|
|
def write(self, obj): |
|
for file in self.files: |
|
file.write(obj) |
|
|
|
def flush(self): |
|
for file in self.files: |
|
file.flush() |
|
|
|
|
|
def handle_improve_mode(prompt, agent, memory, files_dict): |
|
captured_output = io.StringIO() |
|
old_stdout = sys.stdout |
|
sys.stdout = Tee(sys.stdout, captured_output) |
|
|
|
try: |
|
files_dict = agent.improve(files_dict, prompt) |
|
except Exception as e: |
|
print( |
|
f"Error while improving the project: {e}\nCould you please upload the debug_log_file.txt in {memory.path}/logs folder to github?\nFULL STACK TRACE:\n" |
|
) |
|
traceback.print_exc(file=sys.stdout) |
|
finally: |
|
|
|
sys.stdout = old_stdout |
|
|
|
|
|
captured_string = captured_output.getvalue() |
|
print(captured_string) |
|
memory.log(DEBUG_LOG_FILE, "\nCONSOLE OUTPUT:\n" + captured_string) |
|
|
|
return files_dict |
|
|