kakumusic's picture
Upload folder using huggingface_hub
e7c3249 verified
"""
Module for running benchmarks.
This module defines functions to run benchmarks using a given agent and to print
the results of the benchmark tasks.
Functions
---------
run : function
Runs the benchmark tasks using the provided agent and returns a list of TaskResult objects.
print_results : function
Prints the results of the benchmark tasks to the console.
"""
import time
from typing import List
import yaml
from gpt_engineer.benchmark.types import Assertable, Benchmark, TaskResult
from gpt_engineer.core.base_agent import BaseAgent
from gpt_engineer.core.default.disk_execution_env import DiskExecutionEnv
def run(
agent: BaseAgent,
benchmark: Benchmark,
verbose=False,
) -> List[TaskResult]:
"""
Runs the benchmark tasks using the provided agent and returns a list of TaskResult objects.
Parameters
----------
agent : BaseAgent
The agent to use for running the benchmark tasks.
benchmark : Benchmark
The benchmark containing the tasks to run.
verbose : bool, default=False
A flag to indicate whether to print verbose output during the benchmark.
Returns
-------
List[TaskResult]
A list of TaskResult objects representing the results of the benchmark tasks.
"""
task_results = []
for task in benchmark.tasks:
print(f"--> Running task: {task.name}\n")
t0 = time.time()
files_dict = agent.improve(task.initial_code, task.prompt)
t1 = time.time()
env = DiskExecutionEnv()
env.upload(files_dict)
if task.command:
p = env.popen(task.command)
stdout, stderr = p.communicate(benchmark.timeout)
stdout, stderr = stdout.decode("utf-8"), stderr.decode("utf-8")
else:
p, stdout, stderr = None, None, None
exec_result = Assertable(
files=files_dict,
env=env,
process=p,
stdout=stdout,
stderr=stderr,
)
task_results.append(
TaskResult(
task_name=task.name,
assertion_results={
assertion_name: assertion(exec_result)
for assertion_name, assertion in task.assertions.items()
},
duration=t1 - t0,
)
)
if verbose:
print_results(task_results)
return task_results
def print_results(results: list[TaskResult]):
"""
Prints the results of the benchmark tasks to the console.
Parameters
----------
results : list[TaskResult]
A list of TaskResult objects representing the results of the benchmark tasks.
Returns
-------
None
"""
for task_result in results:
print(f"\n--- Results for {task_result.task_name} ---")
print(f"{task_result.task_name} ({task_result.duration:.2f}s)")
for assertion_name, assertion_result in task_result.assertion_results.items():
checkmark = "βœ…" if assertion_result else "❌"
print(f" {checkmark} {assertion_name}")
print()
success_rates = [task_result.success_rate for task_result in results]
avg_success_rate = sum(success_rates) / len(results)
total_time = sum(task_result.duration for task_result in results)
correct_assertions = sum(
sum(
assertion_result
for assertion_result in task_result.assertion_results.values()
)
for task_result in results
)
total_assertions = sum(
len(task_result.assertion_results) for task_result in results
)
correct_tasks = [
task_result for task_result in results if task_result.success_rate == 1
]
print("--- Results ---")
print(f"Total time: {total_time:.2f}s")
print(f"Completely correct tasks: {len(correct_tasks)}/{len(results)}")
print(f"Total correct assertions: {correct_assertions}/{total_assertions}")
print(f"Average success rate: {avg_success_rate * 100}% on {len(results)} tasks")
print("--- Results ---")
print()
def export_yaml_results(yaml_path, complete_results, config):
for results in complete_results.values():
correct_tasks = [
task_result
for task_result in results["detailed"]
if task_result["solved"] == 1.0
]
fraction_correct = len(correct_tasks) / len(results["detailed"])
results["fully_solved"] = fraction_correct
complete_results["config"] = config
with open(yaml_path, "w") as f:
yaml.dump(complete_results, f, indent=4)