kakumusic's picture
Upload folder using huggingface_hub
e7c3249 verified
"""
Entrypoint for the CLI tool.
This module serves as the entry point for a command-line interface (CLI) tool.
It is designed to interact with OpenAI's language models.
The module provides functionality to:
- Load necessary environment variables,
- Configure various parameters for the AI interaction,
- Manage the generation or improvement of code projects.
Main Functionality
------------------
- Load environment variables required for OpenAI API interaction.
- Parse user-specified parameters for project configuration and AI behavior.
- Facilitate interaction with AI models, databases, and archival processes.
Parameters
----------
None
Notes
-----
- The `OPENAI_API_KEY` must be set in the environment or provided in a `.env` file within the working directory.
- The default project path is `projects/example`.
- When using the `azure_endpoint` parameter, provide the Azure OpenAI service endpoint URL.
"""
import difflib
import json
import logging
import os
import platform
import subprocess
import sys
from pathlib import Path
import openai
import typer
from dotenv import load_dotenv
from langchain.globals import set_llm_cache
from langchain_community.cache import SQLiteCache
from termcolor import colored
from gpt_engineer.applications.cli.cli_agent import CliAgent
from gpt_engineer.applications.cli.collect import collect_and_send_human_review
from gpt_engineer.applications.cli.file_selector import FileSelector
from gpt_engineer.core.ai import AI, ClipboardAI
from gpt_engineer.core.default.disk_execution_env import DiskExecutionEnv
from gpt_engineer.core.default.disk_memory import DiskMemory
from gpt_engineer.core.default.file_store import FileStore
from gpt_engineer.core.default.paths import PREPROMPTS_PATH, memory_path
from gpt_engineer.core.default.steps import (
execute_entrypoint,
gen_code,
handle_improve_mode,
improve_fn as improve_fn,
)
from gpt_engineer.core.files_dict import FilesDict
from gpt_engineer.core.git import stage_uncommitted_to_git
from gpt_engineer.core.preprompts_holder import PrepromptsHolder
from gpt_engineer.core.prompt import Prompt
from gpt_engineer.tools.custom_steps import clarified_gen, lite_gen, self_heal
app = typer.Typer(
context_settings={"help_option_names": ["-h", "--help"]}
) # creates a CLI app
def load_env_if_needed():
"""
Load environment variables if the OPENAI_API_KEY is not already set.
This function checks if the OPENAI_API_KEY environment variable is set,
and if not, it attempts to load it from a .env file in the current working
directory. It then sets the openai.api_key for use in the application.
"""
# We have all these checks for legacy reasons...
if os.getenv("OPENAI_API_KEY") is None:
load_dotenv()
if os.getenv("OPENAI_API_KEY") is None:
load_dotenv(dotenv_path=os.path.join(os.getcwd(), ".env"))
openai.api_key = os.getenv("OPENAI_API_KEY")
if os.getenv("ANTHROPIC_API_KEY") is None:
load_dotenv()
if os.getenv("ANTHROPIC_API_KEY") is None:
load_dotenv(dotenv_path=os.path.join(os.getcwd(), ".env"))
def concatenate_paths(base_path, sub_path):
# Compute the relative path from base_path to sub_path
relative_path = os.path.relpath(sub_path, base_path)
# If the relative path is not in the parent directory, use the original sub_path
if not relative_path.startswith(".."):
return sub_path
# Otherwise, concatenate base_path and sub_path
return os.path.normpath(os.path.join(base_path, sub_path))
def load_prompt(
input_repo: DiskMemory,
improve_mode: bool,
prompt_file: str,
image_directory: str,
entrypoint_prompt_file: str = "",
) -> Prompt:
"""
Load or request a prompt from the user based on the mode.
Parameters
----------
input_repo : DiskMemory
The disk memory object where prompts and other data are stored.
improve_mode : bool
Flag indicating whether the application is in improve mode.
Returns
-------
str
The loaded or inputted prompt.
"""
if os.path.isdir(prompt_file):
raise ValueError(
f"The path to the prompt, {prompt_file}, already exists as a directory. No prompt can be read from it. Please specify a prompt file using --prompt_file"
)
prompt_str = input_repo.get(prompt_file)
if prompt_str:
print(colored("Using prompt from file:", "green"), prompt_file)
print(prompt_str)
else:
if not improve_mode:
prompt_str = input(
"\nWhat application do you want gpt-engineer to generate?\n"
)
else:
prompt_str = input("\nHow do you want to improve the application?\n")
if entrypoint_prompt_file == "":
entrypoint_prompt = ""
else:
full_entrypoint_prompt_file = concatenate_paths(
input_repo.path, entrypoint_prompt_file
)
if os.path.isfile(full_entrypoint_prompt_file):
entrypoint_prompt = input_repo.get(full_entrypoint_prompt_file)
else:
raise ValueError("The provided file at --entrypoint-prompt does not exist")
if image_directory == "":
return Prompt(prompt_str, entrypoint_prompt=entrypoint_prompt)
full_image_directory = concatenate_paths(input_repo.path, image_directory)
if os.path.isdir(full_image_directory):
if len(os.listdir(full_image_directory)) == 0:
raise ValueError("The provided --image_directory is empty.")
image_repo = DiskMemory(full_image_directory)
return Prompt(
prompt_str,
image_repo.get(".").to_dict(),
entrypoint_prompt=entrypoint_prompt,
)
else:
raise ValueError("The provided --image_directory is not a directory.")
def get_preprompts_path(use_custom_preprompts: bool, input_path: Path) -> Path:
"""
Get the path to the preprompts, using custom ones if specified.
Parameters
----------
use_custom_preprompts : bool
Flag indicating whether to use custom preprompts.
input_path : Path
The path to the project directory.
Returns
-------
Path
The path to the directory containing the preprompts.
"""
original_preprompts_path = PREPROMPTS_PATH
if not use_custom_preprompts:
return original_preprompts_path
custom_preprompts_path = input_path / "preprompts"
if not custom_preprompts_path.exists():
custom_preprompts_path.mkdir()
for file in original_preprompts_path.glob("*"):
if not (custom_preprompts_path / file.name).exists():
(custom_preprompts_path / file.name).write_text(file.read_text())
return custom_preprompts_path
def compare(f1: FilesDict, f2: FilesDict):
def colored_diff(s1, s2):
lines1 = s1.splitlines()
lines2 = s2.splitlines()
diff = difflib.unified_diff(lines1, lines2, lineterm="")
RED = "\033[38;5;202m"
GREEN = "\033[92m"
RESET = "\033[0m"
colored_lines = []
for line in diff:
if line.startswith("+"):
colored_lines.append(GREEN + line + RESET)
elif line.startswith("-"):
colored_lines.append(RED + line + RESET)
else:
colored_lines.append(line)
return "\n".join(colored_lines)
for file in sorted(set(f1) | set(f2)):
diff = colored_diff(f1.get(file, ""), f2.get(file, ""))
if diff:
print(f"Changes to {file}:")
print(diff)
def prompt_yesno() -> bool:
TERM_CHOICES = colored("y", "green") + "/" + colored("n", "red") + " "
while True:
response = input(TERM_CHOICES).strip().lower()
if response in ["y", "yes"]:
return True
if response in ["n", "no"]:
break
print("Please respond with 'y' or 'n'")
def get_system_info():
system_info = {
"os": platform.system(),
"os_version": platform.version(),
"architecture": platform.machine(),
"python_version": sys.version,
"packages": format_installed_packages(get_installed_packages()),
}
return system_info
def get_installed_packages():
try:
result = subprocess.run(
[sys.executable, "-m", "pip", "list", "--format=json"],
capture_output=True,
text=True,
)
packages = json.loads(result.stdout)
return {pkg["name"]: pkg["version"] for pkg in packages}
except Exception as e:
return str(e)
def format_installed_packages(packages):
return "\n".join([f"{name}: {version}" for name, version in packages.items()])
@app.command(
help="""
GPT-engineer lets you:
\b
- Specify a software in natural language
- Sit back and watch as an AI writes and executes the code
- Ask the AI to implement improvements
"""
)
def main(
project_path: str = typer.Argument(".", help="path"),
model: str = typer.Option(
os.environ.get("MODEL_NAME", "gpt-4o"), "--model", "-m", help="model id string"
),
temperature: float = typer.Option(
0.1,
"--temperature",
"-t",
help="Controls randomness: lower values for more focused, deterministic outputs",
),
improve_mode: bool = typer.Option(
False,
"--improve",
"-i",
help="Improve an existing project by modifying the files.",
),
lite_mode: bool = typer.Option(
False,
"--lite",
"-l",
help="Lite mode: run a generation using only the main prompt.",
),
clarify_mode: bool = typer.Option(
False,
"--clarify",
"-c",
help="Clarify mode - discuss specification with AI before implementation.",
),
self_heal_mode: bool = typer.Option(
False,
"--self-heal",
"-sh",
help="Self-heal mode - fix the code by itself when it fails.",
),
azure_endpoint: str = typer.Option(
"",
"--azure",
"-a",
help="""Endpoint for your Azure OpenAI Service (https://xx.openai.azure.com).
In that case, the given model is the deployment name chosen in the Azure AI Studio.""",
),
use_custom_preprompts: bool = typer.Option(
False,
"--use-custom-preprompts",
help="""Use your project's custom preprompts instead of the default ones.
Copies all original preprompts to the project's workspace if they don't exist there.""",
),
llm_via_clipboard: bool = typer.Option(
False,
"--llm-via-clipboard",
help="Use the clipboard to communicate with the AI.",
),
verbose: bool = typer.Option(
False, "--verbose", "-v", help="Enable verbose logging for debugging."
),
debug: bool = typer.Option(
False, "--debug", "-d", help="Enable debug mode for debugging."
),
prompt_file: str = typer.Option(
"prompt",
"--prompt_file",
help="Relative path to a text file containing a prompt.",
),
entrypoint_prompt_file: str = typer.Option(
"",
"--entrypoint_prompt",
help="Relative path to a text file containing a file that specifies requirements for you entrypoint.",
),
image_directory: str = typer.Option(
"",
"--image_directory",
help="Relative path to a folder containing images.",
),
use_cache: bool = typer.Option(
False,
"--use_cache",
help="Speeds up computations and saves tokens when running the same prompt multiple times by caching the LLM response.",
),
no_execution: bool = typer.Option(
False,
"--no_execution",
help="Run setup but to not call LLM or write any code. For testing purposes.",
),
sysinfo: bool = typer.Option(
False,
"--sysinfo",
help="Output system information for debugging",
),
):
"""
The main entry point for the CLI tool that generates or improves a project.
This function sets up the CLI tool, loads environment variables, initializes
the AI, and processes the user's request to generate or improve a project
based on the provided arguments.
Parameters
----------
project_path : str
The file path to the project directory.
model : str
The model ID string for the AI.
temperature : float
The temperature setting for the AI's responses.
improve_mode : bool
Flag indicating whether to improve an existing project.
lite_mode : bool
Flag indicating whether to run in lite mode.
clarify_mode : bool
Flag indicating whether to discuss specifications with AI before implementation.
self_heal_mode : bool
Flag indicating whether to enable self-healing mode.
azure_endpoint : str
The endpoint for Azure OpenAI services.
use_custom_preprompts : bool
Flag indicating whether to use custom preprompts.
prompt_file : str
Relative path to a text file containing a prompt.
entrypoint_prompt_file: str
Relative path to a text file containing a file that specifies requirements for you entrypoint.
image_directory: str
Relative path to a folder containing images.
use_cache: bool
Speeds up computations and saves tokens when running the same prompt multiple times by caching the LLM response.
verbose : bool
Flag indicating whether to enable verbose logging.
no_execution: bool
Run setup but to not call LLM or write any code. For testing purposes.
sysinfo: bool
Flag indicating whether to output system information for debugging.
Returns
-------
None
"""
if debug:
import pdb
sys.excepthook = lambda *_: pdb.pm()
if sysinfo:
sys_info = get_system_info()
for key, value in sys_info.items():
print(f"{key}: {value}")
raise typer.Exit()
# Validate arguments
if improve_mode and (clarify_mode or lite_mode):
typer.echo("Error: Clarify and lite mode are not compatible with improve mode.")
raise typer.Exit(code=1)
# Set up logging
logging.basicConfig(level=logging.DEBUG if verbose else logging.INFO)
if use_cache:
set_llm_cache(SQLiteCache(database_path=".langchain.db"))
if improve_mode:
assert not (
clarify_mode or lite_mode
), "Clarify and lite mode are not active for improve mode"
load_env_if_needed()
if llm_via_clipboard:
ai = ClipboardAI()
else:
ai = AI(
model_name=model,
temperature=temperature,
azure_endpoint=azure_endpoint,
)
path = Path(project_path)
print("Running gpt-engineer in", path.absolute(), "\n")
prompt = load_prompt(
DiskMemory(path),
improve_mode,
prompt_file,
image_directory,
entrypoint_prompt_file,
)
# todo: if ai.vision is false and not llm_via_clipboard - ask if they would like to use gpt-4-vision-preview instead? If so recreate AI
if not ai.vision:
prompt.image_urls = None
# configure generation function
if clarify_mode:
code_gen_fn = clarified_gen
elif lite_mode:
code_gen_fn = lite_gen
else:
code_gen_fn = gen_code
# configure execution function
if self_heal_mode:
execution_fn = self_heal
else:
execution_fn = execute_entrypoint
preprompts_holder = PrepromptsHolder(
get_preprompts_path(use_custom_preprompts, Path(project_path))
)
memory = DiskMemory(memory_path(project_path))
memory.archive_logs()
execution_env = DiskExecutionEnv()
agent = CliAgent.with_default_config(
memory,
execution_env,
ai=ai,
code_gen_fn=code_gen_fn,
improve_fn=improve_fn,
process_code_fn=execution_fn,
preprompts_holder=preprompts_holder,
)
files = FileStore(project_path)
if not no_execution:
if improve_mode:
files_dict_before, is_linting = FileSelector(project_path).ask_for_files()
# lint the code
if is_linting:
files_dict_before = files.linting(files_dict_before)
files_dict = handle_improve_mode(prompt, agent, memory, files_dict_before)
if not files_dict or files_dict_before == files_dict:
print(
f"No changes applied. Could you please upload the debug_log_file.txt in {memory.path}/logs folder in a github issue?"
)
else:
print("\nChanges to be made:")
compare(files_dict_before, files_dict)
print()
print(colored("Do you want to apply these changes?", "light_green"))
if not prompt_yesno():
files_dict = files_dict_before
else:
files_dict = agent.init(prompt)
# collect user feedback if user consents
config = (code_gen_fn.__name__, execution_fn.__name__)
collect_and_send_human_review(prompt, model, temperature, config, memory)
stage_uncommitted_to_git(path, files_dict, improve_mode)
files.push(files_dict)
if ai.token_usage_log.is_openai_model():
print("Total api cost: $ ", ai.token_usage_log.usage_cost())
elif os.getenv("LOCAL_MODEL"):
print("Total api cost: $ 0.0 since we are using local LLM.")
else:
print("Total tokens used: ", ai.token_usage_log.total_tokens())
if __name__ == "__main__":
app()