{ "edges": [ { "arrows": "to", "from": "agbenchmark/generate_test.py::TestWriteFile::test_method[challenge_data0]", "id": "agbenchmark/generate_test.py::TestWriteFile::test_method[challenge_data0]_to_agbenchmark/generate_test.py::TestReadFile::test_method[challenge_data0]", "to": "agbenchmark/generate_test.py::TestReadFile::test_method[challenge_data0]" }, { "arrows": "to", "from": "agbenchmark/generate_test.py::TestSearch::test_method[challenge_data0]", "id": "agbenchmark/generate_test.py::TestSearch::test_method[challenge_data0]_to_agbenchmark/generate_test.py::TestBasicRetrieval::test_method[challenge_data0]", "to": "agbenchmark/generate_test.py::TestBasicRetrieval::test_method[challenge_data0]" }, { "arrows": "to", "from": "agbenchmark/generate_test.py::TestWriteFile::test_method[challenge_data0]", "id": "agbenchmark/generate_test.py::TestWriteFile::test_method[challenge_data0]_to_agbenchmark/generate_test.py::TestSearch::test_method[challenge_data0]", "to": "agbenchmark/generate_test.py::TestSearch::test_method[challenge_data0]" }, { "arrows": "to", "from": "agbenchmark/generate_test.py::TestRevenueRetrieval2::test_method[challenge_data0]", "id": "agbenchmark/generate_test.py::TestRevenueRetrieval2::test_method[challenge_data0]_to_agbenchmark/generate_test.py::TestTestGetInformation::test_method[challenge_data0]", "to": "agbenchmark/generate_test.py::TestTestGetInformation::test_method[challenge_data0]" }, { "arrows": "to", "from": "agbenchmark/generate_test.py::TestRevenueRetrieval::test_method[challenge_data0]", "id": "agbenchmark/generate_test.py::TestRevenueRetrieval::test_method[challenge_data0]_to_agbenchmark/generate_test.py::TestRevenueRetrieval2::test_method[challenge_data0]", "to": "agbenchmark/generate_test.py::TestRevenueRetrieval2::test_method[challenge_data0]" }, { "arrows": "to", "from": "agbenchmark/generate_test.py::TestBasicRetrieval::test_method[challenge_data0]", "id": "agbenchmark/generate_test.py::TestBasicRetrieval::test_method[challenge_data0]_to_agbenchmark/generate_test.py::TestRevenueRetrieval::test_method[challenge_data0]", "to": "agbenchmark/generate_test.py::TestRevenueRetrieval::test_method[challenge_data0]" }, { "arrows": "to", "from": "agbenchmark/generate_test.py::TestReadFile::test_method[challenge_data0]", "id": "agbenchmark/generate_test.py::TestReadFile::test_method[challenge_data0]_to_agbenchmark/generate_test.py::TestSynthesizeInfo::test_method[challenge_data0]", "to": "agbenchmark/generate_test.py::TestSynthesizeInfo::test_method[challenge_data0]" } ], "nodes": [ { "color": "grey", "data": { "category": [ "general", "coding", "scrape_synthesize", "data" ], "cutoff": 60, "dependencies": [ "TestWriteFile" ], "eval_id": "f219f3d3-a41b-45a9-a3d0-389832086ee8", "ground": { "answer": "The content of output.txt should be 'Hello World!'", "eval": { "type": "file" }, "files": [ "output.txt" ], "should_contain": [ "Hello World!" ] }, "info": { "description": "Tests if the agent can read a file.", "difficulty": "interface", "side_effects": [ "" ] }, "name": "TestReadFile", "task": "Read the file called file_to_read.txt and write its content to a file called output.txt" }, "id": "agbenchmark/generate_test.py::TestReadFile::test_method[challenge_data0]", "label": "ReadFile", "shape": "dot" }, { "color": "grey", "data": { "category": [ "general", "coding", "scrape_synthesize", "data" ], "cutoff": 60, "dependencies": [], "eval_id": "021c695a-6cc4-46c2-b93a-f3a9b0f4d123", "ground": { "answer": "The word 'Washington', printed to a .txt file named anything", "eval": { "type": "file" }, "files": [ ".txt" ], "should_contain": [ "Washington" ], "should_not_contain": [] }, "info": { "description": "Tests if the agent can write a file", "difficulty": "interface", "side_effects": [ "" ] }, "name": "TestWriteFile", "task": "Write the word 'Washington' to a .txt file" }, "id": "agbenchmark/generate_test.py::TestWriteFile::test_method[challenge_data0]", "label": "WriteFile", "shape": "dot" }, { "color": "grey", "data": { "category": [ "scrape_synthesize", "general" ], "cutoff": 60, "dependencies": [ "TestSearch" ], "eval_id": "cd96e6b2-779d-4a4a-8367-d520023e27ae", "ground": { "answer": "\u00a325.89", "eval": { "type": "file" }, "files": [ ".txt" ], "should_contain": [ "25.89" ], "should_not_contain": [] }, "info": { "description": "Tests if the agent can retrieve a specific information from a website.", "difficulty": "basic", "side_effects": [] }, "name": "TestBasicRetrieval", "task": "Write the price of the book in this url 'http://books.toscrape.com/catalogue/meditations_33/index.html' to a .txt file." }, "id": "agbenchmark/generate_test.py::TestBasicRetrieval::test_method[challenge_data0]", "label": "BasicRetrieval", "shape": "dot" }, { "color": "grey", "data": { "category": [ "general", "scrape_synthesize" ], "cutoff": 120, "dependencies": [ "TestWriteFile" ], "eval_id": "0bb23182-b434-402b-a73e-9c226469b959", "ground": { "answer": "This is a Heading\nThis is a paragraph.", "eval": { "type": "file" }, "files": [ ".txt" ], "should_contain": [ "Heading", "paragraph" ], "should_not_contain": [ "The", "the" ] }, "info": { "description": "Tests if the agent can search.", "difficulty": "interface", "side_effects": [ "" ] }, "name": "TestSearch", "task": "Open 'https://silennaihin.com/random/plain.html' and paste all of the text on the page in a .txt file" }, "id": "agbenchmark/generate_test.py::TestSearch::test_method[challenge_data0]", "label": "Search", "shape": "dot" }, { "color": "grey", "data": { "category": [ "scrape_synthesize", "general" ], "cutoff": 60, "dependencies": [ "TestRevenueRetrieval2" ], "eval_id": "1758058c-f726-484f-96fa-f05e278e5ff5", "ground": { "answer": "The twitter handles of the two hosts of Latent Space.", "eval": { "type": "file" }, "files": [ "output.txt" ], "should_contain": [ "swyx", "FanaHOVA" ], "should_not_contain": [] }, "info": { "description": "Tests if the agent can retrieve twitter handles given a vague description.", "difficulty": "intermediate", "side_effects": [ "" ] }, "name": "TestTestGetInformation", "task": "Write the twitter handle of the two hosts of Latent Space to a file called output.txt" }, "id": "agbenchmark/generate_test.py::TestTestGetInformation::test_method[challenge_data0]", "label": "TestGetInformation", "shape": "dot" }, { "color": "grey", "data": { "category": [ "scrape_synthesize" ], "cutoff": 60, "dependencies": [ "TestRevenueRetrieval" ], "eval_id": "552bdf23-db40-4bd1-b123-4ed820886cc1", "ground": { "answer": "15 Millions\n112 Millions\n117 Millions\n204 Millions\n413 Millions\n2,014 Millions\n3,198 Millions\n4,046 Millions\n7,000 Millions\n11,759 Millions\n21,461 Millions\n24,578 Millions\n31,536 Millions\n53,823 Millions\n81,462 Millions", "eval": { "type": "file" }, "files": [ ".txt" ], "should_contain": [ "15", "112", "117", "204", "413", "2,014", "3,198", "4,046", "7,000", "11,759", "21,461", "24,578", "31,536", "53,823", "81,462" ], "should_not_contain": [] }, "info": { "description": "Tests if the agent can retrieve all the revenues of Tesla since its creation.", "difficulty": "intermediate", "side_effects": [ "tests if there is in fact an LLM attached" ] }, "name": "TestRevenueRetrieval2", "task": "Write tesla's revenue every year since its creation into a .txt file. Use the US notation, with a precision rounded to the nearest million dollars (for instance, $31,578 million)." }, "id": "agbenchmark/generate_test.py::TestRevenueRetrieval2::test_method[challenge_data0]", "label": "RevenueRetrieval2", "shape": "dot" }, { "color": "grey", "data": { "category": [ "scrape_synthesize", "general" ], "cutoff": 60, "dependencies": [ "TestBasicRetrieval" ], "eval_id": "dc2114d7-1597-4c9b-bed0-a97937ad977f", "ground": { "answer": "It was $81.462 billion in 2022. In millions the answer is 81,462.", "eval": { "type": "file" }, "files": [ ".txt" ], "should_contain": [ "81,462" ], "should_not_contain": [] }, "info": { "description": "Tests if the agent can retrieve Tesla's revenue in 2022.", "difficulty": "intermediate", "side_effects": [] }, "name": "TestRevenueRetrieval", "task": "Write tesla's exact revenue in 2022 into a .txt file. Use the US notation, with a precision rounded to the nearest million dollars (for instance, $31,578 million)." }, "id": "agbenchmark/generate_test.py::TestRevenueRetrieval::test_method[challenge_data0]", "label": "RevenueRetrieval", "shape": "dot" }, { "color": "grey", "data": { "category": [ "scrape_synthesize", "general" ], "cutoff": 240, "dependencies": [ "TestReadFile" ], "eval_id": "895ae28a-4513-44ea-a872-0164771d1597", "ground": { "answer": "A report highlighting elements from the 2 files.", "eval": { "scoring": "binary", "template": "question", "type": "llm" }, "files": [ "output.txt" ], "should_contain": [ "Is the company mentioned in the output actively addressing or capitalizing on the challenges or trends listed?" ], "should_not_contain": [] }, "info": { "description": "Tests if the agent can generate content based on the content of 2 files.", "difficulty": "basic", "side_effects": [] }, "name": "TestSynthesizeInfo", "task": "Create a brief report or summary highlighting how one or more companies from companies.txt are addressing or capitalizing on challenges or trends from challenges.txt. Write a file called output.txt." }, "id": "agbenchmark/generate_test.py::TestSynthesizeInfo::test_method[challenge_data0]", "label": "SynthesizeInfo", "shape": "dot" } ] }