File size: 18,856 Bytes
b225a21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
import logging
import os
from abc import ABC, abstractmethod
from typing import ClassVar, Iterator, Literal

import pytest
import requests
from agent_protocol_client import AgentApi, Step
from pydantic import BaseModel, ValidationError, ValidationInfo, field_validator

from agbenchmark.config import AgentBenchmarkConfig
from agbenchmark.utils.data_types import Category, EvalResult

from .base import BaseChallenge, ChallengeInfo

logger = logging.getLogger(__name__)


EvalType = Literal["string_match", "url_match", "program_html"]
WebArenaSite = Literal[
    "gitlab", "map", "reddit", "shopping", "shopping_admin", "wikipedia"
]
ReferenceAnswerType = Literal["exact_match", "fuzzy_match", "must_include"]


class WebArenaSiteInfo(BaseModel):
    base_url: str
    available: bool = True
    additional_info: str = ""
    unavailable_reason: str = ""


_git_user, _git_password = os.getenv("WEBARENA_GIT_CREDENTIALS", ":").split(":")

site_info_map: dict[WebArenaSite, WebArenaSiteInfo] = {
    "gitlab": WebArenaSiteInfo(
        base_url="http://git.junglegym.ai",
        available=bool(_git_user and _git_password),
        additional_info=(
            f"To log in to {{url}}, use the username '{_git_user}' "
            f"and password '{_git_password}'."
        ),
        unavailable_reason=(
            "WEBARENA_GIT_CREDENTIALS not set (correctly): "
            f"'{os.getenv('WEBARENA_GIT_CREDENTIALS', '')}', "
            "should be USERNAME:PASSWORD."
        ),
    ),
    "map": WebArenaSiteInfo(
        base_url="http://ec2-3-131-244-37.us-east-2.compute.amazonaws.com:3000/"
    ),
    "reddit": WebArenaSiteInfo(base_url="http://forum.junglegym.ai"),
    "shopping": WebArenaSiteInfo(base_url="http://shop.junglegym.ai"),
    "shopping_admin": WebArenaSiteInfo(
        base_url="http://cms.junglegym.ai/admin",
        additional_info=(
            "To log in to {url}, use the username 'admin' and password 'admin1234'."
        ),
    ),
    "wikipedia": WebArenaSiteInfo(base_url="http://wiki.junglegym.ai"),
}


def get_site_info(site: WebArenaSite) -> WebArenaSiteInfo:
    if site not in site_info_map:
        raise ValueError(f"JungleGym site '{site}' unknown, cannot resolve URL")
    return site_info_map[site]


def get_site_url(site: WebArenaSite) -> str:
    return get_site_info(site).base_url


def resolve_uri(uri: str) -> str:
    """
    Resolves URIs with mock hosts, like `__WIKI__/wiki/Octopus`, with the corresponding
    JungleGym site mirror host.
    """
    segments = uri.split("__")
    if len(segments) > 2 and (site := segments[1]).lower() in site_info_map:
        return uri.replace(f"__{site}__", get_site_url(site.lower()))  # type: ignore
    return uri


class Eval(ABC):
    @abstractmethod
    def evaluate(self, string: str) -> bool:
        ...

    @property
    @abstractmethod
    def description(self) -> str:
        ...


class BaseStringEval(BaseModel, Eval):
    # type: ReferenceAnswerType
    pass


class ExactStringMatchEval(BaseStringEval):
    type: Literal["exact_match"] = "exact_match"
    reference_answer: str

    @property
    def description(self) -> str:
        return f"Answer must be '{self.reference_answer}'"

    def evaluate(self, string: str) -> bool:
        return string == self.reference_answer


class FuzzyStringMatchEval(BaseStringEval):
    type: Literal["fuzzy_match"] = "fuzzy_match"
    reference_answer: str

    @property
    def description(self) -> str:
        return f"Answer must contain something like '{self.reference_answer}'"

    def evaluate(self, string: str) -> bool:
        # TODO: use LLM for matching (or something else that's flexible/robust)
        return self.reference_answer.lower() in string.lower()


class MustIncludeStringEval(BaseStringEval):
    type: Literal["must_include"] = "must_include"
    reference_answer: str

    @property
    def description(self) -> str:
        return f"Answer must include '{self.reference_answer}'"

    def evaluate(self, string: str) -> bool:
        return self.reference_answer.lower() in string.lower()


StringEval = ExactStringMatchEval | FuzzyStringMatchEval | MustIncludeStringEval


class UrlMatchEval(BaseModel, Eval):
    url: str
    """Example: `"__WIKI__/wiki/Octopus"`"""

    @property
    def description(self) -> str:
        return f"Agent must navigate to '{self.url}'"

    def evaluate(self, string: str) -> bool:
        return string == resolve_uri(self.url)


class ProgramHtmlEval(BaseModel):
    url: str
    locator: str
    """JavaScript code that returns the value to check"""
    required_contents: str

    @property
    def description(self) -> str:
        return (
            f"On the webpage {self.url}, "
            f"`{self.locator}` should contain '{self.required_contents}'"
        )

    def evaluate(self, selenium_instance) -> bool:
        result = selenium_instance.execute_script(
            self.locator or "return document.body.innerHTML;"
        )
        return self.required_contents in result


_Eval = StringEval | UrlMatchEval | ProgramHtmlEval


class WebArenaChallengeSpec(BaseModel):
    task_id: int
    sites: list[WebArenaSite]
    """The sites needed to complete the task"""
    start_url: str
    """The full URL at which to start"""
    start_url_junglegym: str
    """The JungleGym site (base URL) at which to start"""
    require_login: bool
    require_reset: bool
    storage_state: str | None = None

    intent: str
    intent_template: str
    intent_template_id: int
    instantiation_dict: dict[str, str | list[str]]

    available: bool = True
    unavailable_reason: str = ""

    class EvalSet(BaseModel):
        class StringMatchEvalSet(BaseModel):
            exact_match: str | None = None
            fuzzy_match: list[str] | None = None
            must_include: list[str] | None = None

        reference_answers: StringMatchEvalSet | None = None
        """For string_match eval, a set of criteria to judge the final answer"""
        reference_answer_raw_annotation: str | None = None
        string_note: str | None = None
        annotation_note: str | None = None

        reference_url: str | None = None
        """For url_match eval, the last URL that should be visited"""
        url_note: str | None = None

        program_html: list[ProgramHtmlEval]
        """For program_html eval, a list of criteria to judge the site state by"""

        eval_types: list[EvalType]

        @field_validator("eval_types")
        def check_eval_parameters(cls, value: list[EvalType], info: ValidationInfo):
            if "string_match" in value and not info.data["reference_answers"]:
                raise ValueError("'string_match' eval_type requires reference_answers")
            if "url_match" in value and not info.data["reference_url"]:
                raise ValueError("'url_match' eval_type requires reference_url")
            if "program_html" in value and not info.data["program_html"]:
                raise ValueError(
                    "'program_html' eval_type requires at least one program_html eval"
                )
            return value

        @property
        def evaluators(self) -> list[_Eval]:
            evaluators: list[_Eval] = []
            if self.reference_answers:
                if self.reference_answers.exact_match:
                    evaluators.append(
                        ExactStringMatchEval(
                            reference_answer=self.reference_answers.exact_match
                        )
                    )
                if self.reference_answers.fuzzy_match:
                    evaluators.extend(
                        FuzzyStringMatchEval(reference_answer=a)
                        for a in self.reference_answers.fuzzy_match
                    )
                if self.reference_answers.must_include:
                    evaluators.extend(
                        MustIncludeStringEval(reference_answer=a)
                        for a in self.reference_answers.must_include
                    )
            if self.reference_url:
                evaluators.append(UrlMatchEval(url=self.reference_url))
            evaluators.extend(self.program_html)
            return evaluators

    eval: EvalSet
    """Evaluation criteria by which to judge the agent's performance"""

    @property
    def assignment_for_agent(self):
        sites = [get_site_info(s) for s in self.sites]
        nav_constraint = (
            "You are ONLY allowed to access URLs in "
            f"{' and '.join(s.base_url for s in sites)}.\n\n"
            + "\n".join(
                s.additional_info.format(url=s.base_url)
                for s in sites
                if s.additional_info
            )
        ).strip()

        return (
            f"First of all, go to {self.start_url}. "
            f"{self.intent.rstrip('.')}.\n"
            f"{nav_constraint}"
        )


class WebArenaChallenge(BaseChallenge):
    _spec: ClassVar[WebArenaChallengeSpec]

    SOURCE_URI_PREFIX = "__JUNGLEGYM__/webarena/tasks/"
    SOURCE_URI_TEMPLATE = f"{SOURCE_URI_PREFIX}{{task_id}}"

    @classmethod
    def from_source_uri(cls, source_uri: str) -> type["WebArenaChallenge"]:
        if not source_uri.startswith(cls.SOURCE_URI_PREFIX):
            raise ValueError(f"Invalid source_uri for WebArenaChallenge: {source_uri}")

        source_url = source_uri.replace(
            cls.SOURCE_URI_PREFIX,
            "https://api.junglegym.ai/get_webarena_by_task_id?task_id=",
        )
        results = requests.get(source_url).json()["data"]
        if not results:
            raise ValueError(f"Could not fetch challenge {source_uri}")
        return cls.from_challenge_spec(WebArenaChallengeSpec.model_validate(results[0]))

    @classmethod
    def from_challenge_spec(
        cls, spec: WebArenaChallengeSpec
    ) -> type["WebArenaChallenge"]:
        challenge_info = ChallengeInfo(
            eval_id=f"junglegym-webarena-{spec.task_id}",
            name=f"WebArenaTask_{spec.task_id}",
            task=spec.assignment_for_agent,
            category=[
                Category.GENERALIST,
                Category.WEB,
            ],  # TODO: make categories more specific
            reference_answer=spec.eval.reference_answer_raw_annotation,
            source_uri=cls.SOURCE_URI_TEMPLATE.format(task_id=spec.task_id),
            available=spec.available,
            unavailable_reason=spec.unavailable_reason,
        )
        return type(
            f"Test{challenge_info.name}",
            (WebArenaChallenge,),
            {
                "info": challenge_info,
                "_spec": spec,
            },
        )

    @classmethod
    def evaluate_answer(cls, answer: str) -> list[tuple[_Eval, EvalResult]]:
        results: list[tuple[_Eval, EvalResult]] = []
        for evaluator in cls._spec.eval.evaluators:
            if isinstance(evaluator, StringEval):  # string_match
                results.append(
                    (
                        evaluator,
                        EvalResult(
                            result=answer,
                            result_source="step_output",
                            score=evaluator.evaluate(answer),
                            passed=evaluator.evaluate(answer),
                        ),
                    )
                )
        return results

    @classmethod
    def evaluate_step_result(
        cls, step: Step, *, mock: bool = False
    ) -> list[tuple[_Eval, EvalResult]]:
        if mock:
            step.output = cls.info.reference_answer
        assert step.output
        eval_results = cls.evaluate_answer(step.output)
        for eval in cls._spec.eval.evaluators:
            if isinstance(eval, UrlMatchEval):
                passed = resolve_uri(eval.url) in step.output  # HACK: url_match bodge
                eval_results.append(
                    (
                        eval,
                        EvalResult(
                            result=step.output,
                            result_source="step_output",
                            score=1.0 if passed else 0.0,
                            passed=passed,
                        ),
                    )
                )
            # TODO: add support for program_html evals
        return eval_results

    @classmethod
    async def evaluate_task_state(
        cls, agent: AgentApi, task_id: str
    ) -> list[EvalResult]:
        steps: list[Step] = (await agent.list_agent_task_steps(task_id)).steps

        eval_results_per_step = [cls.evaluate_step_result(step) for step in steps]
        # Get the column aggregate (highest scored EvalResult for each Eval)
        # from the matrix of EvalResults per step.
        return [
            max(step_results_for_eval, key=lambda r: r[1].score)[1]
            for step_results_for_eval in zip(*eval_results_per_step)
        ]

    @pytest.mark.asyncio
    async def test_method(
        self,
        config: AgentBenchmarkConfig,
        request: pytest.FixtureRequest,
        i_attempt: int,
    ) -> None:
        if not self._spec.available:
            pytest.skip(self._spec.unavailable_reason)

        # if os.environ.get("HELICONE_API_KEY"):
        #     from helicone.lock import HeliconeLockManager

        #     HeliconeLockManager.write_custom_property("challenge", self.info.name)

        timeout = 120
        if request.config.getoption("--nc"):
            timeout = 100000
        elif cutoff := request.config.getoption("--cutoff"):
            timeout = int(cutoff)  # type: ignore

        assert isinstance(request.node, pytest.Item)

        n_steps = 0
        timed_out = None
        agent_task_cost = None
        steps: list[Step] = []
        eval_results_per_step: list[list[tuple[_Eval, EvalResult]]] = []
        try:
            async for step in self.run_challenge(
                config, timeout, mock=bool(request.config.getoption("--mock"))
            ):
                if not step.output:
                    logger.warn(f"Step has no output: {step}")
                    continue

                n_steps += 1
                steps.append(step)
                if step.additional_output:
                    agent_task_cost = step.additional_output.get(
                        "task_total_cost",
                        step.additional_output.get("task_cumulative_cost"),
                    )

                step_eval_results = self.evaluate_step_result(
                    step, mock=bool(request.config.getoption("--mock"))
                )
                logger.debug(f"Intermediary results: {step_eval_results}")
                eval_results_per_step.append(step_eval_results)
                if step.is_last:
                    request.node.user_properties.append(
                        (
                            "answers",
                            step.output
                            if request.config.getoption("--keep-answers")
                            else None,
                        )
                    )
            timed_out = False
        except TimeoutError:
            timed_out = True
        request.node.user_properties.append(("steps", steps))
        request.node.user_properties.append(("n_steps", n_steps))
        request.node.user_properties.append(("timed_out", timed_out))
        request.node.user_properties.append(("agent_task_cost", agent_task_cost))

        # Get the column aggregate (highest score for each Eval)
        # from the matrix of EvalResults per step.
        evals_results = [
            max(step_results_for_eval, key=lambda r: r[1].score)
            for step_results_for_eval in zip(*eval_results_per_step)
        ]

        if not evals_results:
            if timed_out:
                raise TimeoutError("Timed out, no results to evaluate")
            else:
                raise ValueError("No results to evaluate")

        request.node.user_properties.append(
            ("scores", [r[1].score for r in evals_results])
        )

        # FIXME: arbitrary threshold
        assert all(r[1].score > 0.9 for r in evals_results), (
            "Scores insufficient:\n\n"
            if not timed_out
            else "Timed out; scores insufficient:\n\n"
        ) + "\n".join(f"{repr(r[0])}\n  -> {repr(r[1])}" for r in evals_results)


def load_webarena_challenges(
    skip_unavailable: bool = True,
) -> Iterator[type[WebArenaChallenge]]:
    logger.info("Loading WebArena challenges...")

    for site, info in site_info_map.items():
        if not info.available and skip_unavailable:
            logger.warning(
                f"JungleGym site '{site}' is not available: {info.unavailable_reason} "
                "Skipping all challenges which use this site."
            )

    # response = requests.get("https://api.junglegym.ai/get_full_webarena_dataset")
    # challenge_dicts = response.json()["data"]

    # Until the full WebArena challenge set is supported, use a hand-picked selection
    import json
    from pathlib import Path

    challenge_dicts = json.loads(
        (Path(__file__).parent / "webarena_selection.json").read_bytes()
    )

    logger.debug(
        "Fetched WebArena dataset. "
        f"Constructing {len(challenge_dicts)} WebArenaChallenges..."
    )
    loaded = 0
    failed = 0
    skipped = 0
    for entry in challenge_dicts:
        try:
            challenge_spec = WebArenaChallengeSpec.model_validate(entry)
        except ValidationError as e:
            failed += 1
            logger.warning(f"Error validating WebArena challenge entry: {entry}")
            logger.warning(f"Error details: {e}")
            continue

        # Check all required sites for availability
        for site in challenge_spec.sites:
            site_info = site_info_map.get(site)
            if site_info is None:
                challenge_spec.available = False
                challenge_spec.unavailable_reason = (
                    f"WebArena task {challenge_spec.task_id} requires unknown site "
                    f"'{site}'"
                )
            elif not site_info.available:
                challenge_spec.available = False
                challenge_spec.unavailable_reason = (
                    f"WebArena task {challenge_spec.task_id} requires unavailable "
                    f"site '{site}'"
                )

        if not challenge_spec.available and skip_unavailable:
            logger.debug(f"{challenge_spec.unavailable_reason}; skipping...")
            skipped += 1
            continue

        yield WebArenaChallenge.from_challenge_spec(challenge_spec)
        loaded += 1

    logger.info(
        "Loading WebArena challenges complete: "
        f"loaded {loaded}, skipped {skipped}."
        + (f" {failed} challenges failed to load." if failed else "")
    )