|
from transformers import pipeline |
|
import gradio as gr |
|
import librosa |
|
import numpy as np |
|
|
|
from transformers import WhisperProcessor, WhisperForConditionalGeneration, pipeline |
|
|
|
|
|
processor = WhisperProcessor.from_pretrained("kadriu/whisper-turbo-sq") |
|
model = WhisperForConditionalGeneration.from_pretrained("kadriu/whisper-turbo-sq") |
|
|
|
|
|
|
|
|
|
|
|
def transcribe(audio): |
|
audio_input, _ = librosa.load(audio, sr=16000) |
|
input_features = processor(audio_input, sampling_rate=16000, return_tensors="pt").input_features |
|
|
|
predicted_ids = model.generate(input_features) |
|
|
|
|
|
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) |
|
text = transcription |
|
|
|
return text |
|
|
|
iface = gr.Interface( |
|
fn=transcribe, |
|
inputs=gr.Audio(source="microphone", type="filepath"), |
|
outputs="text", |
|
title="ASR Albanian", |
|
description="Realtime demo for Sq speech recognition", |
|
) |
|
|
|
iface.launch(share=True) |