Update demo_gradio.py
Browse files- demo_gradio.py +3 -3
demo_gradio.py
CHANGED
@@ -26,7 +26,7 @@ import glob
|
|
26 |
import torch
|
27 |
import cv2
|
28 |
import argparse
|
29 |
-
|
30 |
import DPT.util.io
|
31 |
|
32 |
from torchvision.transforms import Compose
|
@@ -55,7 +55,7 @@ pipe = StableDiffusionXLControlNetInpaintPipeline.from_pretrained(
|
|
55 |
add_watermarker=False,
|
56 |
).to(device)
|
57 |
pipe.unet = register_cross_attention_hook(pipe.unet)
|
58 |
-
|
59 |
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device)
|
60 |
|
61 |
|
@@ -161,7 +161,7 @@ def greet(input_image, material_exemplar):
|
|
161 |
|
162 |
|
163 |
num_samples = 1
|
164 |
-
images = ip_model.generate(guidance_scale=2, pil_image=ip_image, image=init_img, control_image=depth_map, mask_image=mask, controlnet_conditioning_scale=0.9, num_samples=num_samples, num_inference_steps=
|
165 |
|
166 |
return images[0]
|
167 |
|
|
|
26 |
import torch
|
27 |
import cv2
|
28 |
import argparse
|
29 |
+
from diffusers.models.attention_processor import AttnProcessor2_0
|
30 |
import DPT.util.io
|
31 |
|
32 |
from torchvision.transforms import Compose
|
|
|
55 |
add_watermarker=False,
|
56 |
).to(device)
|
57 |
pipe.unet = register_cross_attention_hook(pipe.unet)
|
58 |
+
pipe.unet.set_attn_processor(AttnProcessor2_0())
|
59 |
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device)
|
60 |
|
61 |
|
|
|
161 |
|
162 |
|
163 |
num_samples = 1
|
164 |
+
images = ip_model.generate(guidance_scale=2, pil_image=ip_image, image=init_img, control_image=depth_map, mask_image=mask, controlnet_conditioning_scale=0.9, num_samples=num_samples, num_inference_steps=4, seed=42)
|
165 |
|
166 |
return images[0]
|
167 |
|