Spaces:
kadirnar
/
Runtime error

File size: 5,170 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved

import glob
import os
import shutil
from os import path
from setuptools import find_packages, setup
from typing import List
import torch
from torch.utils.cpp_extension import CUDA_HOME, CppExtension, CUDAExtension

torch_ver = [int(x) for x in torch.__version__.split(".")[:2]]
assert torch_ver >= [1, 4], "Requires PyTorch >= 1.4"


def get_version():
    init_py_path = path.join(path.abspath(path.dirname(__file__)), "detectron2", "__init__.py")
    init_py = open(init_py_path, "r").readlines()
    version_line = [l.strip() for l in init_py if l.startswith("__version__")][0]
    version = version_line.split("=")[-1].strip().strip("'\"")

    # The following is used to build release packages.
    # Users should never use it.
    suffix = os.getenv("D2_VERSION_SUFFIX", "")
    version = version + suffix
    if os.getenv("BUILD_NIGHTLY", "0") == "1":
        from datetime import datetime

        date_str = datetime.today().strftime("%y%m%d")
        version = version + ".dev" + date_str

        new_init_py = [l for l in init_py if not l.startswith("__version__")]
        new_init_py.append('__version__ = "{}"\n'.format(version))
        with open(init_py_path, "w") as f:
            f.write("".join(new_init_py))
    return version


def get_extensions():
    this_dir = path.dirname(path.abspath(__file__))
    extensions_dir = path.join(this_dir, "detectron2", "layers", "csrc")

    main_source = path.join(extensions_dir, "vision.cpp")
    sources = glob.glob(path.join(extensions_dir, "**", "*.cpp"))
    source_cuda = glob.glob(path.join(extensions_dir, "**", "*.cu")) + glob.glob(
        path.join(extensions_dir, "*.cu")
    )

    sources = [main_source] + sources
    extension = CppExtension

    extra_compile_args = {"cxx": []}
    define_macros = []

    if (
        torch.cuda.is_available() and CUDA_HOME is not None and os.path.isdir(CUDA_HOME)
    ) or os.getenv("FORCE_CUDA", "0") == "1":
        extension = CUDAExtension
        sources += source_cuda
        define_macros += [("WITH_CUDA", None)]
        extra_compile_args["nvcc"] = [
            "-DCUDA_HAS_FP16=1",
            "-D__CUDA_NO_HALF_OPERATORS__",
            "-D__CUDA_NO_HALF_CONVERSIONS__",
            "-D__CUDA_NO_HALF2_OPERATORS__",
        ]

        # It's better if pytorch can do this by default ..
        CC = os.environ.get("CC", None)
        if CC is not None:
            extra_compile_args["nvcc"].append("-ccbin={}".format(CC))

    include_dirs = [extensions_dir]

    ext_modules = [
        extension(
            "detectron2._C",
            sources,
            include_dirs=include_dirs,
            define_macros=define_macros,
            extra_compile_args=extra_compile_args,
        )
    ]

    return ext_modules


def get_model_zoo_configs() -> List[str]:
    """
    Return a list of configs to include in package for model zoo. Copy over these configs inside
    detectron2/model_zoo.
    """

    # Use absolute paths while symlinking.
    source_configs_dir = path.join(path.dirname(path.realpath(__file__)), "configs")
    destination = path.join(
        path.dirname(path.realpath(__file__)), "detectron2", "model_zoo", "configs"
    )
    # Symlink the config directory inside package to have a cleaner pip install.

    # Remove stale symlink/directory from a previous build.
    if path.exists(source_configs_dir):
        if path.islink(destination):
            os.unlink(destination)
        elif path.isdir(destination):
            shutil.rmtree(destination)

    if not path.exists(destination):
        try:
            os.symlink(source_configs_dir, destination)
        except OSError:
            # Fall back to copying if symlink fails: ex. on Windows.
            shutil.copytree(source_configs_dir, destination)

    config_paths = glob.glob("configs/**/*.yaml", recursive=True)
    return config_paths


setup(
    name="detectron2",
    version=get_version(),
    author="FAIR",
    url="https://github.com/facebookresearch/detectron2",
    description="Detectron2 is FAIR's next-generation research "
    "platform for object detection and segmentation.",
    packages=find_packages(exclude=("configs", "tests*")),
    package_data={"detectron2.model_zoo": get_model_zoo_configs()},
    python_requires=">=3.6",
    install_requires=[
        "termcolor>=1.1",
        "Pillow",  # you can also use pillow-simd for better performance
        "yacs>=0.1.6",
        "tabulate",
        "cloudpickle",
        "matplotlib",
        "mock",
        "tqdm>4.29.0",
        "tensorboard",
        "fvcore>=0.1.1",
        "future",  # used by caffe2
        "pydot",  # used to save caffe2 SVGs
    ],
    extras_require={
        "all": ["shapely", "psutil"],
        "dev": [
            "flake8==3.7.9",
            "isort",
            "black @ git+https://github.com/psf/black@673327449f86fce558adde153bb6cbe54bfebad2",
            "flake8-bugbear",
            "flake8-comprehensions",
        ],
    },
    ext_modules=get_extensions(),
    cmdclass={"build_ext": torch.utils.cpp_extension.BuildExtension},
)