Spaces:
Runtime error
Runtime error
kabita-choudhary
commited on
Commit
•
7478ded
1
Parent(s):
7c2cc3c
Update app.py
Browse files
app.py
CHANGED
@@ -16,63 +16,71 @@ import gradio as gr
|
|
16 |
|
17 |
from sklearn.cluster import AgglomerativeClustering
|
18 |
import numpy as np
|
|
|
|
|
|
|
19 |
|
20 |
|
21 |
-
num_speakers = 2
|
22 |
-
|
23 |
-
language = 'English'
|
24 |
-
|
25 |
-
model_size = 'medium'
|
26 |
-
model = whisper.load_model(model_size)
|
27 |
-
|
28 |
-
|
29 |
-
model_name = model_size
|
30 |
-
audio = Audio()
|
31 |
-
def segmentembedding(segment):
|
32 |
-
start = segment["start"]
|
33 |
-
end = min(duration, segment["end"])
|
34 |
-
clip = Segment(start, end)
|
35 |
-
waveform, sample_rate = audio.crop(path, clip)
|
36 |
-
return embedding_model(waveform[None])
|
37 |
def time(secs):
|
38 |
return datetime.timedelta(seconds=round(secs))
|
39 |
-
from transformers import pipeline
|
40 |
-
summarizer = pipeline("summarization", model="kabita-choudhary/finetuned-bart-for-conversation-summary")
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
result = model.transcribe(path)
|
48 |
segments = result["segments"]
|
49 |
print(segments)
|
|
|
50 |
with contextlib.closing(wave.open(path,'r')) as f:
|
51 |
frames = f.getnframes()
|
52 |
rate = f.getframerate()
|
53 |
duration = frames / float(rate)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
embeddings = np.zeros(shape=(len(segments), 192))
|
|
|
55 |
for i, segment in enumerate(segments):
|
56 |
-
embeddings[i] =
|
57 |
embeddings = np.nan_to_num(embeddings)
|
58 |
clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
|
59 |
labels = clustering.labels_
|
|
|
60 |
for i in range(len(segments)):
|
61 |
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
|
62 |
f = open("transcript.txt", "w")
|
|
|
63 |
for (i, segment) in enumerate(segments):
|
64 |
if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
|
65 |
-
f.write(
|
66 |
-
out=out+segment["speaker"]
|
67 |
-
f.write(segment["text"][1:] + '
|
68 |
out=out+segment["text"][1:] + '\n'
|
69 |
f.close()
|
|
|
70 |
summary = summarizer(out)
|
71 |
-
|
|
|
|
|
|
|
72 |
|
73 |
demo = gr.Interface(
|
74 |
fn=translatetotext,
|
75 |
-
inputs=gr.
|
76 |
-
outputs=["text","text"]
|
77 |
)
|
78 |
demo.launch(debug=True)
|
|
|
16 |
|
17 |
from sklearn.cluster import AgglomerativeClustering
|
18 |
import numpy as np
|
19 |
+
import os
|
20 |
+
from transformers import pipeline
|
21 |
+
summarizer = pipeline("summarization", model="kabita-choudhary/finetuned-bart-for-conversation-summary")
|
22 |
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def time(secs):
|
25 |
return datetime.timedelta(seconds=round(secs))
|
|
|
|
|
26 |
|
27 |
+
|
28 |
+
def translatetotext(vpath,no_of_speaker):
|
29 |
+
num_speakers = no_of_speaker
|
30 |
+
language = 'English'
|
31 |
+
model_size = 'small'
|
32 |
+
model = whisper.load_model(model_size)
|
33 |
+
model_name = model_size
|
34 |
+
_,file_ending = os.path.splitext(f'{vpath}')
|
35 |
+
print(f'file enging is {file_ending}')
|
36 |
+
path = vpath.replace(file_ending, ".wav")
|
37 |
+
print("starting conversion to wav")
|
38 |
+
os.system(f'ffmpeg -i "{vpath}" -ar 16000 -ac 1 -c:a pcm_s16le "{path}"')
|
39 |
result = model.transcribe(path)
|
40 |
segments = result["segments"]
|
41 |
print(segments)
|
42 |
+
duration=0
|
43 |
with contextlib.closing(wave.open(path,'r')) as f:
|
44 |
frames = f.getnframes()
|
45 |
rate = f.getframerate()
|
46 |
duration = frames / float(rate)
|
47 |
+
def segment_embedding(segment):
|
48 |
+
audio = Audio()
|
49 |
+
start = segment["start"]
|
50 |
+
# Whisper overshoots the end timestamp in the last segment
|
51 |
+
end = min(duration, segment["end"])
|
52 |
+
clip = Segment(start, end)
|
53 |
+
waveform, sample_rate = audio.crop(path, clip)
|
54 |
+
return embedding_model(waveform[None])
|
55 |
embeddings = np.zeros(shape=(len(segments), 192))
|
56 |
+
print(duration)
|
57 |
for i, segment in enumerate(segments):
|
58 |
+
embeddings[i] = segment_embedding(segment)
|
59 |
embeddings = np.nan_to_num(embeddings)
|
60 |
clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
|
61 |
labels = clustering.labels_
|
62 |
+
print(labels)
|
63 |
for i in range(len(segments)):
|
64 |
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
|
65 |
f = open("transcript.txt", "w")
|
66 |
+
out=""
|
67 |
for (i, segment) in enumerate(segments):
|
68 |
if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
|
69 |
+
f.write(segment["speaker"] + ' ' + str(time(segment["start"]))+' ' + str(time(segment["end"]))+' ')
|
70 |
+
out=out+segment["speaker"]+' ' + str(time(segment["start"]))+' ' + str(time(segment["end"]))+' '
|
71 |
+
f.write(segment["text"][1:] + '\n')
|
72 |
out=out+segment["text"][1:] + '\n'
|
73 |
f.close()
|
74 |
+
|
75 |
summary = summarizer(out)
|
76 |
+
f = open("summary.txt", "w")
|
77 |
+
f.write(summary[0]["summary_text"])
|
78 |
+
f.close()
|
79 |
+
return out,summary[0]["summary_text"],"transcript.txt","summary.txt"
|
80 |
|
81 |
demo = gr.Interface(
|
82 |
fn=translatetotext,
|
83 |
+
inputs=[gr.Video(source="upload",type="filepath"),gr.Number(precision=0, value=2, label="Selected number of speakers", interactive=True)],
|
84 |
+
outputs=["text","text",gr.File(label="Download transcript"),gr.File(label="Download summary")]
|
85 |
)
|
86 |
demo.launch(debug=True)
|