File size: 8,306 Bytes
3590c0c f0a085b 03b48c7 f0a085b 3590c0c f0a085b 21fcf42 3590c0c 8ebeeb8 3590c0c ea07244 02084e1 ea07244 3590c0c f0a085b 808a042 f0a085b b922c32 21fcf42 b922c32 6393c35 b922c32 3f0ce41 b922c32 b07203d b922c32 3590c0c ea07244 21fcf42 3590c0c 6393c35 3590c0c 3f0ce41 3590c0c 1cd8b79 e4911f7 21fcf42 4384167 f0a085b b07203d 149d674 b07203d 21fcf42 f0a085b cfd7673 de273b3 f0a085b 03b48c7 ffd4c6b 8556603 de273b3 03b48c7 8ed6ca2 03b48c7 994c238 cfd7673 03b48c7 3590c0c ea07244 3590c0c ea07244 76241f8 ea07244 21fcf42 ea07244 3590c0c e4911f7 02084e1 3590c0c f0a085b 3590c0c e4911f7 3590c0c 994c238 e4911f7 cfd7673 e4911f7 994c238 e4911f7 4360bb8 e4911f7 cfd7673 e4911f7 994c238 e4911f7 b922c32 3590c0c ea07244 21fcf42 e4911f7 3590c0c 03b48c7 994c238 e4911f7 cfd7673 e4911f7 94e0fd2 e4911f7 21fcf42 e4911f7 cfd7673 03b48c7 3590c0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
#!/usr/bin/env python3
#
# Copyright 2022-2023 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# References:
# https://gradio.app/docs/#dropdown
import logging
import os
from pathlib import Path
import gradio as gr
from decode import decode
from model import get_pretrained_model, get_vad, language_to_models, get_punct_model
title = "# Next-gen Kaldi: Generate subtitles for videos"
description = """
This space shows how to generate subtitles/captions with Next-gen Kaldi.
It is running on CPU within a docker container provided by Hugging Face.
Please find test video files at
<https://huggingface.co./csukuangfj/vad/tree/main>
See more information by visiting the following links:
- <https://github.com/k2-fsa/sherpa-onnx>
- <https://github.com/k2-fsa/icefall>
- <https://github.com/k2-fsa/k2>
- <https://github.com/lhotse-speech/lhotse>
If you want to deploy it locally, please see
<https://k2-fsa.github.io/sherpa/>
"""
# css style is copied from
# https://huggingface.co./spaces/alphacep/asr/blob/main/app.py#L113
css = """
.result {display:flex;flex-direction:column}
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
.result_item_error {background-color:#ff7070;color:white;align-self:start}
"""
def update_model_dropdown(language: str):
if language in language_to_models:
choices = language_to_models[language]
return gr.Dropdown(
choices=choices,
value=choices[0],
interactive=True,
)
raise ValueError(f"Unsupported language: {language}")
def build_html_output(s: str, style: str = "result_item_success"):
return f"""
<div class='result'>
<div class='result_item {style}'>
{s}
</div>
</div>
"""
def show_file_info(in_filename: str):
logging.info(f"Input file: {in_filename}")
_ = os.system(f"ffprobe -hide_banner -i '{in_filename}'")
def process_uploaded_video_file(
language: str,
repo_id: str,
add_punctuation: str,
in_filename: str,
):
if in_filename is None or in_filename == "":
return (
"",
build_html_output(
"Please first upload a file and then click "
'the button "submit for recognition"',
"result_item_error",
),
"",
"",
)
logging.info(f"Processing uploaded video file: {in_filename}")
ans = process(language, repo_id, add_punctuation, in_filename)
return (in_filename, ans[0]), ans[0], ans[1], ans[2], ans[3]
def process_uploaded_audio_file(
language: str,
repo_id: str,
add_punctuation: str,
in_filename: str,
):
if in_filename is None or in_filename == "":
return (
"",
build_html_output(
"Please first upload a file and then click "
'the button "submit for recognition"',
"result_item_error",
),
"",
"",
)
logging.info(f"Processing uploaded audio file: {in_filename}")
return process(language, repo_id, add_punctuation, in_filename)
def process(language: str, repo_id: str, add_punctuation: str, in_filename: str):
logging.info(f"add_punctuation: {add_punctuation}")
recognizer = get_pretrained_model(repo_id)
vad = get_vad()
if (
"whisper" in repo_id
or "korean" in repo_id
or "vosk-model" in repo_id
or "asr-gigaspeech2-th-zipformer" in repo_id
):
add_punctuation = "No"
if add_punctuation == "Yes":
punct = get_punct_model()
else:
punct = None
result, all_text = decode(recognizer, vad, punct, in_filename)
logging.info(result)
srt_filename = Path(in_filename).with_suffix(".srt")
with open(srt_filename, "w", encoding="utf-8") as f:
f.write(result)
show_file_info(in_filename)
logging.info(f"all_text:\n{all_text}")
logging.info("Done")
return (
str(srt_filename),
build_html_output("Done! Please download the SRT file", "result_item_success"),
result,
all_text,
)
demo = gr.Blocks(css=css)
with demo:
gr.Markdown(title)
language_choices = list(language_to_models.keys())
language_radio = gr.Radio(
label="Language",
choices=language_choices,
value=language_choices[0],
)
model_dropdown = gr.Dropdown(
choices=language_to_models[language_choices[0]],
label="Select a model",
value=language_to_models[language_choices[0]][0],
)
language_radio.change(
update_model_dropdown,
inputs=language_radio,
outputs=model_dropdown,
)
punct_radio = gr.Radio(
label="Whether to add punctuation",
choices=["Yes", "No"],
value="Yes",
)
with gr.Tabs():
with gr.TabItem("Upload video from disk"):
uploaded_video_file = gr.Video(
sources=["upload"],
label="Upload from disk",
show_share_button=True,
)
upload_video_button = gr.Button("Submit for recognition")
output_video = gr.Video(label="Output")
output_srt_file_video = gr.File(
label="Generated subtitles", show_label=True
)
output_info_video = gr.HTML(label="Info")
output_textbox_video = gr.Textbox(
label="Recognized speech from uploaded video file (srt format)"
)
all_output_textbox_video = gr.Textbox(
label="Recognized speech from uploaded video file (all in one)"
)
with gr.TabItem("Upload audio from disk"):
uploaded_audio_file = gr.Audio(
sources=["upload"], # Choose between "microphone", "upload"
type="filepath",
label="Upload audio from disk",
)
upload_audio_button = gr.Button("Submit for recognition")
output_srt_file_audio = gr.File(
label="Generated subtitles", show_label=True
)
output_info_audio = gr.HTML(label="Info")
output_textbox_audio = gr.Textbox(
label="Recognized speech from uploaded audio file (srt format)"
)
all_output_textbox_audio = gr.Textbox(
label="Recognized speech from uploaded audio file (all in one)"
)
upload_video_button.click(
process_uploaded_video_file,
inputs=[
language_radio,
model_dropdown,
punct_radio,
uploaded_video_file,
],
outputs=[
output_video,
output_srt_file_video,
output_info_video,
output_textbox_video,
all_output_textbox_video,
],
)
upload_audio_button.click(
process_uploaded_audio_file,
inputs=[
language_radio,
model_dropdown,
punct_radio,
uploaded_audio_file,
],
outputs=[
output_srt_file_audio,
output_info_audio,
output_textbox_audio,
all_output_textbox_audio,
],
)
gr.Markdown(description)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
demo.launch()
|