# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) # # See LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from functools import lru_cache from typing import Union import torch import torchaudio from huggingface_hub import hf_hub_download os.system( "cp -v /usr/local/lib/python3.8/site-packages/k2/lib/*.so //usr/local/lib/python3.8/site-packages/sherpa/lib/" ) os.system( "cp -v /home/user/.local/lib/python3.8/site-packages/k2/lib/*.so /home/user/.local/lib/python3.8/site-packages/sherpa/lib/" ) import k2 # noqa import sherpa import sherpa_onnx import numpy as np from typing import Tuple import wave sample_rate = 16000 def read_wave(wave_filename: str) -> Tuple[np.ndarray, int]: """ Args: wave_filename: Path to a wave file. It should be single channel and each sample should be 16-bit. Its sample rate does not need to be 16kHz. Returns: Return a tuple containing: - A 1-D array of dtype np.float32 containing the samples, which are normalized to the range [-1, 1]. - sample rate of the wave file """ with wave.open(wave_filename) as f: assert f.getnchannels() == 1, f.getnchannels() assert f.getsampwidth() == 2, f.getsampwidth() # it is in bytes num_samples = f.getnframes() samples = f.readframes(num_samples) samples_int16 = np.frombuffer(samples, dtype=np.int16) samples_float32 = samples_int16.astype(np.float32) samples_float32 = samples_float32 / 32768 return samples_float32, f.getframerate() def decode_offline_recognizer( recognizer: sherpa.OfflineRecognizer, filename: str, ) -> str: s = recognizer.create_stream() s.accept_wave_file(filename) recognizer.decode_stream(s) text = s.result.text.strip() # return text.lower() return text def decode_online_recognizer( recognizer: sherpa.OnlineRecognizer, filename: str, ) -> str: samples, actual_sample_rate = torchaudio.load(filename) assert sample_rate == actual_sample_rate, ( sample_rate, actual_sample_rate, ) samples = samples[0].contiguous() s = recognizer.create_stream() tail_padding = torch.zeros(int(sample_rate * 0.3), dtype=torch.float32) s.accept_waveform(sample_rate, samples) s.accept_waveform(sample_rate, tail_padding) s.input_finished() while recognizer.is_ready(s): recognizer.decode_stream(s) text = recognizer.get_result(s).text # return text.strip().lower() return text.strip() def decode_offline_recognizer_sherpa_onnx( recognizer: sherpa_onnx.OfflineRecognizer, filename: str, ) -> str: s = recognizer.create_stream() samples, sample_rate = read_wave(filename) s.accept_waveform(sample_rate, samples) recognizer.decode_stream(s) # return s.result.text.lower() return s.result.text def decode_online_recognizer_sherpa_onnx( recognizer: sherpa_onnx.OnlineRecognizer, filename: str, ) -> str: s = recognizer.create_stream() samples, sample_rate = read_wave(filename) s.accept_waveform(sample_rate, samples) tail_paddings = np.zeros(int(0.3 * sample_rate), dtype=np.float32) s.accept_waveform(sample_rate, tail_paddings) s.input_finished() while recognizer.is_ready(s): recognizer.decode_stream(s) # return recognizer.get_result(s).lower() return recognizer.get_result(s) def decode( recognizer: Union[ sherpa.OfflineRecognizer, sherpa.OnlineRecognizer, sherpa_onnx.OfflineRecognizer, sherpa_onnx.OnlineRecognizer, ], filename: str, ) -> str: if isinstance(recognizer, sherpa.OfflineRecognizer): return decode_offline_recognizer(recognizer, filename) elif isinstance(recognizer, sherpa.OnlineRecognizer): return decode_online_recognizer(recognizer, filename) elif isinstance(recognizer, sherpa_onnx.OfflineRecognizer): return decode_offline_recognizer_sherpa_onnx(recognizer, filename) elif isinstance(recognizer, sherpa_onnx.OnlineRecognizer): return decode_online_recognizer_sherpa_onnx(recognizer, filename) else: raise ValueError(f"Unknown recognizer type {type(recognizer)}") @lru_cache(maxsize=30) def get_pretrained_model( repo_id: str, decoding_method: str, num_active_paths: int, ) -> Union[sherpa.OfflineRecognizer, sherpa.OnlineRecognizer]: if repo_id in chinese_models: return chinese_models[repo_id]( repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths ) elif repo_id in chinese_dialect_models: return chinese_dialect_models[repo_id]( repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths ) elif repo_id in english_models: return english_models[repo_id]( repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths ) elif repo_id in chinese_english_mixed_models: return chinese_english_mixed_models[repo_id]( repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths ) elif repo_id in chinese_cantonese_english_models: return chinese_cantonese_english_models[repo_id]( repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths ) elif repo_id in chinese_cantonese_english_japanese_korean_models: return chinese_cantonese_english_japanese_korean_models[repo_id]( repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths ) elif repo_id in cantonese_models: return cantonese_models[repo_id]( repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths ) elif repo_id in tibetan_models: return tibetan_models[repo_id]( repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths ) elif repo_id in arabic_models: return arabic_models[repo_id]( repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths ) elif repo_id in german_models: return german_models[repo_id]( repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths ) elif repo_id in french_models: return french_models[repo_id]( repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths ) elif repo_id in japanese_models: return japanese_models[repo_id]( repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths ) elif repo_id in russian_models: return russian_models[repo_id]( repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths ) elif repo_id in korean_models: return korean_models[repo_id]( repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths ) elif repo_id in thai_models: return thai_models[repo_id]( repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths ) else: raise ValueError(f"Unsupported repo_id: {repo_id}") def _get_nn_model_filename( repo_id: str, filename: str, subfolder: str = "exp", ) -> str: nn_model_filename = hf_hub_download( repo_id=repo_id, filename=filename, subfolder=subfolder, ) return nn_model_filename def _get_bpe_model_filename( repo_id: str, filename: str = "bpe.model", subfolder: str = "data/lang_bpe_500", ) -> str: bpe_model_filename = hf_hub_download( repo_id=repo_id, filename=filename, subfolder=subfolder, ) return bpe_model_filename def _get_token_filename( repo_id: str, filename: str = "tokens.txt", subfolder: str = "data/lang_char", ) -> str: token_filename = hf_hub_download( repo_id=repo_id, filename=filename, subfolder=subfolder, ) return token_filename @lru_cache(maxsize=10) def _get_aishell2_pretrained_model( repo_id: str, decoding_method: str, num_active_paths: int, ) -> sherpa.OfflineRecognizer: assert repo_id in [ # context-size 1 "yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-A-2022-07-12", # noqa # context-size 2 "yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12", # noqa ], repo_id nn_model = _get_nn_model_filename( repo_id=repo_id, filename="cpu_jit.pt", ) tokens = _get_token_filename(repo_id=repo_id) feat_config = sherpa.FeatureConfig() feat_config.fbank_opts.frame_opts.samp_freq = sample_rate feat_config.fbank_opts.mel_opts.num_bins = 80 feat_config.fbank_opts.frame_opts.dither = 0 config = sherpa.OfflineRecognizerConfig( nn_model=nn_model, tokens=tokens, use_gpu=False, feat_config=feat_config, decoding_method=decoding_method, num_active_paths=num_active_paths, ) recognizer = sherpa.OfflineRecognizer(config) return recognizer @lru_cache(maxsize=10) def _get_offline_pre_trained_model( repo_id: str, decoding_method: str, num_active_paths: int ) -> sherpa_onnx.OfflineRecognizer: assert repo_id in ( "k2-fsa/sherpa-onnx-zipformer-korean-2024-06-24", "reazon-research/reazonspeech-k2-v2", ), repo_id encoder_model = _get_nn_model_filename( repo_id=repo_id, filename="encoder-epoch-99-avg-1.int8.onnx", subfolder=".", ) decoder_model = _get_nn_model_filename( repo_id=repo_id, filename="decoder-epoch-99-avg-1.onnx", subfolder=".", ) joiner_model = _get_nn_model_filename( repo_id=repo_id, filename="joiner-epoch-99-avg-1.onnx", subfolder=".", ) tokens = _get_token_filename(repo_id=repo_id, subfolder=".") recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( tokens=tokens, encoder=encoder_model, decoder=decoder_model, joiner=joiner_model, num_threads=2, sample_rate=16000, feature_dim=80, decoding_method=decoding_method, ) return recognizer @lru_cache(maxsize=10) def _get_yifan_thai_pretrained_model( repo_id: str, decoding_method: str, num_active_paths: int ) -> sherpa_onnx.OfflineRecognizer: assert repo_id in ( "yfyeung/icefall-asr-gigaspeech2-th-zipformer-2024-06-20", ), repo_id encoder_model = _get_nn_model_filename( repo_id=repo_id, filename="encoder-epoch-12-avg-5.int8.onnx", subfolder="exp", ) decoder_model = _get_nn_model_filename( repo_id=repo_id, filename="decoder-epoch-12-avg-5.onnx", subfolder="exp", ) joiner_model = _get_nn_model_filename( repo_id=repo_id, filename="joiner-epoch-12-avg-5.int8.onnx", subfolder="exp", ) tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_2000") recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( tokens=tokens, encoder=encoder_model, decoder=decoder_model, joiner=joiner_model, num_threads=2, sample_rate=16000, feature_dim=80, decoding_method=decoding_method, ) return recognizer @lru_cache(maxsize=10) def _get_zrjin_cantonese_pre_trained_model( repo_id: str, decoding_method: str, num_active_paths: int ) -> sherpa_onnx.OfflineRecognizer: assert repo_id in ("zrjin/icefall-asr-mdcc-zipformer-2024-03-11",), repo_id encoder_model = _get_nn_model_filename( repo_id=repo_id, filename="encoder-epoch-45-avg-35.int8.onnx", subfolder="exp", ) decoder_model = _get_nn_model_filename( repo_id=repo_id, filename="decoder-epoch-45-avg-35.onnx", subfolder="exp", ) joiner_model = _get_nn_model_filename( repo_id=repo_id, filename="joiner-epoch-45-avg-35.int8.onnx", subfolder="exp", ) tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_char") recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( tokens=tokens, encoder=encoder_model, decoder=decoder_model, joiner=joiner_model, num_threads=2, sample_rate=16000, feature_dim=80, decoding_method=decoding_method, ) return recognizer @lru_cache(maxsize=10) def _get_russian_pre_trained_model_ctc( repo_id: str, decoding_method: str, num_active_paths: int ) -> sherpa_onnx.OfflineRecognizer: assert repo_id in ( "csukuangfj/sherpa-onnx-nemo-ctc-giga-am-russian-2024-10-24", ), repo_id model = _get_nn_model_filename( repo_id=repo_id, filename="model.int8.onnx", subfolder=".", ) tokens = _get_token_filename(repo_id=repo_id, subfolder=".") recognizer = sherpa_onnx.OfflineRecognizer.from_nemo_ctc( model=model, tokens=tokens, num_threads=2, ) return recognizer @lru_cache(maxsize=10) def _get_russian_pre_trained_model( repo_id: str, decoding_method: str, num_active_paths: int ) -> sherpa_onnx.OfflineRecognizer: assert repo_id in ( "alphacep/vosk-model-ru", "alphacep/vosk-model-small-ru", "csukuangfj/sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24", ), repo_id if repo_id == "alphacep/vosk-model-ru": model_dir = "am-onnx" encoder = "encoder.onnx" model_type = "transducer" elif repo_id == "alphacep/vosk-model-small-ru": model_dir = "am" encoder = "encoder.onnx" model_type = "transducer" elif repo_id == "csukuangfj/sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24": model_dir = "." encoder = "encoder.int8.onnx" model_type = "nemo_transducer" encoder_model = _get_nn_model_filename( repo_id=repo_id, filename=encoder, subfolder=model_dir, ) decoder_model = _get_nn_model_filename( repo_id=repo_id, filename="decoder.onnx", subfolder=model_dir, ) joiner_model = _get_nn_model_filename( repo_id=repo_id, filename="joiner.onnx", subfolder=model_dir, ) if repo_id == "csukuangfj/sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24": tokens = _get_token_filename(repo_id=repo_id, subfolder=".") else: tokens = _get_token_filename(repo_id=repo_id, subfolder="lang") recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( tokens=tokens, encoder=encoder_model, decoder=decoder_model, joiner=joiner_model, num_threads=2, sample_rate=16000, feature_dim=80, decoding_method=decoding_method, model_type=model_type, ) return recognizer @lru_cache(maxsize=10) def _get_moonshine_model( repo_id: str, decoding_method: str, num_active_paths: int ) -> sherpa_onnx.OfflineRecognizer: assert repo_id in ("moonshine-tiny", "moonshine-base"), repo_id if repo_id == "moonshine-tiny": full_repo_id = "csukuangfj/sherpa-onnx-moonshine-tiny-en-int8" elif repo_id == "moonshine-base": full_repo_id = "csukuangfj/sherpa-onnx-moonshine-base-en-int8" else: raise ValueError(f"Unknown repo_id: {repo_id}") preprocessor = _get_nn_model_filename( repo_id=full_repo_id, filename=f"preprocess.onnx", subfolder=".", ) encoder = _get_nn_model_filename( repo_id=full_repo_id, filename=f"encode.int8.onnx", subfolder=".", ) uncached_decoder = _get_nn_model_filename( repo_id=full_repo_id, filename=f"uncached_decode.int8.onnx", subfolder=".", ) cached_decoder = _get_nn_model_filename( repo_id=full_repo_id, filename=f"cached_decode.int8.onnx", subfolder=".", ) tokens = _get_token_filename( repo_id=full_repo_id, subfolder=".", filename="tokens.txt", ) recognizer = sherpa_onnx.OfflineRecognizer.from_moonshine( preprocessor=preprocessor, encoder=encoder, uncached_decoder=uncached_decoder, cached_decoder=cached_decoder, tokens=tokens, num_threads=2, ) return recognizer @lru_cache(maxsize=10) def _get_whisper_model( repo_id: str, decoding_method: str, num_active_paths: int ) -> sherpa_onnx.OfflineRecognizer: name = repo_id.split("-")[1] assert name in ("tiny.en", "base.en", "small.en", "medium.en"), repo_id full_repo_id = "csukuangfj/sherpa-onnx-whisper-" + name encoder = _get_nn_model_filename( repo_id=full_repo_id, filename=f"{name}-encoder.int8.onnx", subfolder=".", ) decoder = _get_nn_model_filename( repo_id=full_repo_id, filename=f"{name}-decoder.int8.onnx", subfolder=".", ) tokens = _get_token_filename( repo_id=full_repo_id, subfolder=".", filename=f"{name}-tokens.txt" ) recognizer = sherpa_onnx.OfflineRecognizer.from_whisper( encoder=encoder, decoder=decoder, tokens=tokens, num_threads=2, ) return recognizer @lru_cache(maxsize=10) def _get_gigaspeech_pre_trained_model( repo_id: str, decoding_method: str, num_active_paths: int, ) -> sherpa.OfflineRecognizer: assert repo_id in [ "wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2", ], repo_id nn_model = _get_nn_model_filename( repo_id=repo_id, filename="cpu_jit-iter-3488000-avg-20.pt", ) tokens = "./giga-tokens.txt" feat_config = sherpa.FeatureConfig() feat_config.fbank_opts.frame_opts.samp_freq = sample_rate feat_config.fbank_opts.mel_opts.num_bins = 80 feat_config.fbank_opts.frame_opts.dither = 0 config = sherpa.OfflineRecognizerConfig( nn_model=nn_model, tokens=tokens, use_gpu=False, feat_config=feat_config, decoding_method=decoding_method, num_active_paths=num_active_paths, ) recognizer = sherpa.OfflineRecognizer(config) return recognizer @lru_cache(maxsize=10) def _get_english_model( repo_id: str, decoding_method: str, num_active_paths: int, ) -> sherpa.OfflineRecognizer: assert repo_id in [ "WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02", # noqa "yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04", # noqa "yfyeung/icefall-asr-finetune-mux-pruned_transducer_stateless7-2023-05-19", # noqa "csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13", # noqa "csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11", # noqa "csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless8-2022-11-14", # noqa "Zengwei/icefall-asr-librispeech-zipformer-large-2023-05-16", # noqa "Zengwei/icefall-asr-librispeech-zipformer-2023-05-15", # noqa "Zengwei/icefall-asr-librispeech-zipformer-small-2023-05-16", # noqa "videodanchik/icefall-asr-tedlium3-conformer-ctc2", "pkufool/icefall_asr_librispeech_conformer_ctc", "WayneWiser/icefall-asr-librispeech-conformer-ctc2-jit-bpe-500-2022-07-21", ], repo_id filename = "cpu_jit.pt" if ( repo_id == "csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11" ): filename = "cpu_jit-torch-1.10.0.pt" if ( repo_id == "WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02" ): filename = "cpu_jit-torch-1.10.pt" if ( repo_id == "yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04" ): filename = "cpu_jit-epoch-30-avg-4.pt" if ( repo_id == "yfyeung/icefall-asr-finetune-mux-pruned_transducer_stateless7-2023-05-19" ): filename = "cpu_jit-epoch-20-avg-5.pt" if repo_id in ( "Zengwei/icefall-asr-librispeech-zipformer-large-2023-05-16", "Zengwei/icefall-asr-librispeech-zipformer-2023-05-15", "Zengwei/icefall-asr-librispeech-zipformer-small-2023-05-16", ): filename = "jit_script.pt" nn_model = _get_nn_model_filename( repo_id=repo_id, filename=filename, ) subfolder = "data/lang_bpe_500" if repo_id in ( "videodanchik/icefall-asr-tedlium3-conformer-ctc2", "pkufool/icefall_asr_librispeech_conformer_ctc", ): subfolder = "data/lang_bpe" tokens = _get_token_filename(repo_id=repo_id, subfolder=subfolder) feat_config = sherpa.FeatureConfig() feat_config.fbank_opts.frame_opts.samp_freq = sample_rate feat_config.fbank_opts.mel_opts.num_bins = 80 feat_config.fbank_opts.frame_opts.dither = 0 config = sherpa.OfflineRecognizerConfig( nn_model=nn_model, tokens=tokens, use_gpu=False, feat_config=feat_config, decoding_method=decoding_method, num_active_paths=num_active_paths, ) recognizer = sherpa.OfflineRecognizer(config) return recognizer @lru_cache(maxsize=10) def _get_wenetspeech_pre_trained_model( repo_id: str, decoding_method: str, num_active_paths: int, ): assert repo_id in [ "luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2", ], repo_id nn_model = _get_nn_model_filename( repo_id=repo_id, filename="cpu_jit_epoch_10_avg_2_torch_1.7.1.pt", ) tokens = _get_token_filename(repo_id=repo_id) feat_config = sherpa.FeatureConfig() feat_config.fbank_opts.frame_opts.samp_freq = sample_rate feat_config.fbank_opts.mel_opts.num_bins = 80 feat_config.fbank_opts.frame_opts.dither = 0 config = sherpa.OfflineRecognizerConfig( nn_model=nn_model, tokens=tokens, use_gpu=False, feat_config=feat_config, decoding_method=decoding_method, num_active_paths=num_active_paths, ) recognizer = sherpa.OfflineRecognizer(config) return recognizer @lru_cache(maxsize=10) def _get_chinese_english_mixed_model_onnx( repo_id: str, decoding_method: str, num_active_paths: int, ) -> sherpa_onnx.OfflineRecognizer: assert repo_id in [ "zrjin/icefall-asr-zipformer-multi-zh-en-2023-11-22", ], repo_id encoder_model = _get_nn_model_filename( repo_id=repo_id, filename="encoder-epoch-34-avg-19.int8.onnx", subfolder="exp", ) decoder_model = _get_nn_model_filename( repo_id=repo_id, filename="decoder-epoch-34-avg-19.onnx", subfolder="exp", ) joiner_model = _get_nn_model_filename( repo_id=repo_id, filename="joiner-epoch-34-avg-19.int8.onnx", subfolder="exp", ) tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bbpe_2000") recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( tokens=tokens, encoder=encoder_model, decoder=decoder_model, joiner=joiner_model, num_threads=2, sample_rate=16000, feature_dim=80, decoding_method=decoding_method, max_active_paths=num_active_paths, ) return recognizer @lru_cache(maxsize=10) def _get_chinese_english_mixed_model( repo_id: str, decoding_method: str, num_active_paths: int, ) -> sherpa.OfflineRecognizer: assert repo_id in [ "luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5", "ptrnull/icefall-asr-conv-emformer-transducer-stateless2-zh", ], repo_id if repo_id == "luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5": filename = "cpu_jit.pt" subfolder = "data/lang_char" elif repo_id == "ptrnull/icefall-asr-conv-emformer-transducer-stateless2-zh": filename = "cpu_jit-epoch-11-avg-1.pt" subfolder = "data/lang_char_bpe" nn_model = _get_nn_model_filename( repo_id=repo_id, filename=filename, ) tokens = _get_token_filename(repo_id=repo_id, subfolder=subfolder) feat_config = sherpa.FeatureConfig() feat_config.fbank_opts.frame_opts.samp_freq = sample_rate feat_config.fbank_opts.mel_opts.num_bins = 80 feat_config.fbank_opts.frame_opts.dither = 0 config = sherpa.OfflineRecognizerConfig( nn_model=nn_model, tokens=tokens, use_gpu=False, feat_config=feat_config, decoding_method=decoding_method, num_active_paths=num_active_paths, ) recognizer = sherpa.OfflineRecognizer(config) return recognizer @lru_cache(maxsize=10) def _get_alimeeting_pre_trained_model( repo_id: str, decoding_method: str, num_active_paths: int, ): assert repo_id in [ "desh2608/icefall-asr-alimeeting-pruned-transducer-stateless7", "luomingshuang/icefall_asr_alimeeting_pruned_transducer_stateless2", ], repo_id if repo_id == "desh2608/icefall-asr-alimeeting-pruned-transducer-stateless7": filename = "cpu_jit.pt" elif repo_id == "luomingshuang/icefall_asr_alimeeting_pruned_transducer_stateless2": filename = "cpu_jit_torch_1.7.1.pt" nn_model = _get_nn_model_filename( repo_id=repo_id, filename=filename, ) tokens = _get_token_filename(repo_id=repo_id) feat_config = sherpa.FeatureConfig() feat_config.fbank_opts.frame_opts.samp_freq = sample_rate feat_config.fbank_opts.mel_opts.num_bins = 80 feat_config.fbank_opts.frame_opts.dither = 0 config = sherpa.OfflineRecognizerConfig( nn_model=nn_model, tokens=tokens, use_gpu=False, feat_config=feat_config, decoding_method=decoding_method, num_active_paths=num_active_paths, ) recognizer = sherpa.OfflineRecognizer(config) return recognizer @lru_cache(maxsize=10) def _get_wenet_model( repo_id: str, decoding_method: str, num_active_paths: int, ): assert repo_id in [ "csukuangfj/wenet-chinese-model", "csukuangfj/wenet-english-model", ], repo_id nn_model = _get_nn_model_filename( repo_id=repo_id, filename="final.zip", subfolder=".", ) tokens = _get_token_filename( repo_id=repo_id, filename="units.txt", subfolder=".", ) feat_config = sherpa.FeatureConfig(normalize_samples=False) feat_config.fbank_opts.frame_opts.samp_freq = sample_rate feat_config.fbank_opts.mel_opts.num_bins = 80 feat_config.fbank_opts.frame_opts.dither = 0 config = sherpa.OfflineRecognizerConfig( nn_model=nn_model, tokens=tokens, use_gpu=False, feat_config=feat_config, decoding_method=decoding_method, num_active_paths=num_active_paths, ) recognizer = sherpa.OfflineRecognizer(config) return recognizer @lru_cache(maxsize=10) def _get_aidatatang_200zh_pretrained_mode( repo_id: str, decoding_method: str, num_active_paths: int, ): assert repo_id in [ "luomingshuang/icefall_asr_aidatatang-200zh_pruned_transducer_stateless2", ], repo_id nn_model = _get_nn_model_filename( repo_id=repo_id, filename="cpu_jit_torch.1.7.1.pt", ) tokens = _get_token_filename(repo_id=repo_id) feat_config = sherpa.FeatureConfig() feat_config.fbank_opts.frame_opts.samp_freq = sample_rate feat_config.fbank_opts.mel_opts.num_bins = 80 feat_config.fbank_opts.frame_opts.dither = 0 config = sherpa.OfflineRecognizerConfig( nn_model=nn_model, tokens=tokens, use_gpu=False, feat_config=feat_config, decoding_method=decoding_method, num_active_paths=num_active_paths, ) recognizer = sherpa.OfflineRecognizer(config) return recognizer @lru_cache(maxsize=10) def _get_tibetan_pre_trained_model( repo_id: str, decoding_method: str, num_active_paths: int, ): assert repo_id in [ "syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless7-2022-12-02", "syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29", ], repo_id filename = "cpu_jit.pt" if ( repo_id == "syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29" ): filename = "cpu_jit-epoch-28-avg-23-torch-1.10.0.pt" nn_model = _get_nn_model_filename( repo_id=repo_id, filename=filename, ) tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_500") feat_config = sherpa.FeatureConfig() feat_config.fbank_opts.frame_opts.samp_freq = sample_rate feat_config.fbank_opts.mel_opts.num_bins = 80 feat_config.fbank_opts.frame_opts.dither = 0 config = sherpa.OfflineRecognizerConfig( nn_model=nn_model, tokens=tokens, use_gpu=False, feat_config=feat_config, decoding_method=decoding_method, num_active_paths=num_active_paths, ) recognizer = sherpa.OfflineRecognizer(config) return recognizer @lru_cache(maxsize=10) def _get_arabic_pre_trained_model( repo_id: str, decoding_method: str, num_active_paths: int, ): assert repo_id in [ "AmirHussein/icefall-asr-mgb2-conformer_ctc-2022-27-06", ], repo_id nn_model = _get_nn_model_filename( repo_id=repo_id, filename="cpu_jit.pt", ) tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_5000") feat_config = sherpa.FeatureConfig() feat_config.fbank_opts.frame_opts.samp_freq = sample_rate feat_config.fbank_opts.mel_opts.num_bins = 80 feat_config.fbank_opts.frame_opts.dither = 0 config = sherpa.OfflineRecognizerConfig( nn_model=nn_model, tokens=tokens, use_gpu=False, feat_config=feat_config, decoding_method=decoding_method, num_active_paths=num_active_paths, ) recognizer = sherpa.OfflineRecognizer(config) return recognizer @lru_cache(maxsize=10) def _get_german_pre_trained_model( repo_id: str, decoding_method: str, num_active_paths: int, ): assert repo_id in [ "csukuangfj/wav2vec2.0-torchaudio", ], repo_id nn_model = _get_nn_model_filename( repo_id=repo_id, filename="voxpopuli_asr_base_10k_de.pt", subfolder=".", ) tokens = _get_token_filename( repo_id=repo_id, filename="tokens-de.txt", subfolder=".", ) config = sherpa.OfflineRecognizerConfig( nn_model=nn_model, tokens=tokens, use_gpu=False, decoding_method=decoding_method, num_active_paths=num_active_paths, ) recognizer = sherpa.OfflineRecognizer(config) return recognizer @lru_cache(maxsize=10) def _get_french_pre_trained_model( repo_id: str, decoding_method: str, num_active_paths: int, ) -> sherpa_onnx.OnlineRecognizer: assert repo_id in [ "shaojieli/sherpa-onnx-streaming-zipformer-fr-2023-04-14", ], repo_id encoder_model = _get_nn_model_filename( repo_id=repo_id, filename="encoder-epoch-29-avg-9-with-averaged-model.onnx", subfolder=".", ) decoder_model = _get_nn_model_filename( repo_id=repo_id, filename="decoder-epoch-29-avg-9-with-averaged-model.onnx", subfolder=".", ) joiner_model = _get_nn_model_filename( repo_id=repo_id, filename="joiner-epoch-29-avg-9-with-averaged-model.onnx", subfolder=".", ) tokens = _get_token_filename(repo_id=repo_id, subfolder=".") recognizer = sherpa_onnx.OnlineRecognizer.from_transducer( tokens=tokens, encoder=encoder_model, decoder=decoder_model, joiner=joiner_model, num_threads=2, sample_rate=16000, feature_dim=80, decoding_method=decoding_method, max_active_paths=num_active_paths, ) return recognizer @lru_cache(maxsize=10) def _get_sherpa_onnx_nemo_transducer_models( repo_id: str, decoding_method: str, num_active_paths: int, ) -> sherpa_onnx.OfflineRecognizer: assert repo_id in [ "csukuangfj/sherpa-onnx-nemo-parakeet_tdt_transducer_110m-en-36000", ], repo_id encoder_model = _get_nn_model_filename( repo_id=repo_id, filename="encoder.onnx", subfolder=".", ) decoder_model = _get_nn_model_filename( repo_id=repo_id, filename="decoder.onnx", subfolder=".", ) joiner_model = _get_nn_model_filename( repo_id=repo_id, filename="joiner.onnx", subfolder=".", ) tokens = _get_token_filename(repo_id=repo_id, subfolder=".") recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( tokens=tokens, encoder=encoder_model, decoder=decoder_model, joiner=joiner_model, num_threads=2, sample_rate=16000, feature_dim=80, model_type="nemo_transducer", decoding_method=decoding_method, max_active_paths=num_active_paths, ) return recognizer @lru_cache(maxsize=10) def _get_sherpa_onnx_nemo_ctc_models( repo_id: str, decoding_method: str, num_active_paths: int, ) -> sherpa_onnx.OfflineRecognizer: assert repo_id in [ "csukuangfj/sherpa-onnx-nemo-parakeet_tdt_ctc_110m-en-36000", ], repo_id model = _get_nn_model_filename( repo_id=repo_id, filename="model.onnx", subfolder=".", ) tokens = _get_token_filename(repo_id=repo_id, subfolder=".") recognizer = sherpa_onnx.OfflineRecognizer.from_nemo_ctc( tokens=tokens, model=model, num_threads=2, sample_rate=16000, feature_dim=80, ) return recognizer @lru_cache(maxsize=10) def _get_sherpa_onnx_offline_zipformer_pre_trained_model( repo_id: str, decoding_method: str, num_active_paths: int, ) -> sherpa_onnx.OfflineRecognizer: assert repo_id in [ "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-large", "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-medium", "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-small", "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-large-punct-case", "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-medium-punct-case", "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-small-punct-case", ], repo_id if repo_id == "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-large": epoch = 16 avg = 3 elif repo_id == "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-medium": epoch = 60 avg = 20 elif repo_id == "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-small": epoch = 90 avg = 20 elif ( repo_id == "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-large-punct-case" ): epoch = 16 avg = 2 elif ( repo_id == "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-medium-punct-case" ): epoch = 50 avg = 15 elif ( repo_id == "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-small-punct-case" ): epoch = 88 avg = 41 encoder_model = _get_nn_model_filename( repo_id=repo_id, filename=f"encoder-epoch-{epoch}-avg-{avg}.int8.onnx", subfolder=".", ) decoder_model = _get_nn_model_filename( repo_id=repo_id, filename=f"decoder-epoch-{epoch}-avg-{avg}.onnx", subfolder=".", ) joiner_model = _get_nn_model_filename( repo_id=repo_id, filename=f"joiner-epoch-{epoch}-avg-{avg}.int8.onnx", subfolder=".", ) tokens = _get_token_filename(repo_id=repo_id, subfolder=".") recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( tokens=tokens, encoder=encoder_model, decoder=decoder_model, joiner=joiner_model, num_threads=2, sample_rate=16000, feature_dim=80, decoding_method=decoding_method, max_active_paths=num_active_paths, ) return recognizer @lru_cache(maxsize=10) def _get_streaming_zipformer_pre_trained_model( repo_id: str, decoding_method: str, num_active_paths: int, ) -> sherpa_onnx.OnlineRecognizer: assert repo_id in [ "csukuangfj/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20", "k2-fsa/sherpa-onnx-streaming-zipformer-korean-2024-06-16", ], repo_id encoder_model = _get_nn_model_filename( repo_id=repo_id, filename="encoder-epoch-99-avg-1.onnx", subfolder=".", ) decoder_model = _get_nn_model_filename( repo_id=repo_id, filename="decoder-epoch-99-avg-1.onnx", subfolder=".", ) joiner_model = _get_nn_model_filename( repo_id=repo_id, filename="joiner-epoch-99-avg-1.onnx", subfolder=".", ) tokens = _get_token_filename(repo_id=repo_id, subfolder=".") recognizer = sherpa_onnx.OnlineRecognizer.from_transducer( tokens=tokens, encoder=encoder_model, decoder=decoder_model, joiner=joiner_model, num_threads=2, sample_rate=16000, feature_dim=80, decoding_method=decoding_method, max_active_paths=num_active_paths, ) return recognizer @lru_cache(maxsize=10) def _get_japanese_pre_trained_model( repo_id: str, decoding_method: str, num_active_paths: int, ) -> sherpa.OnlineRecognizer: repo_id, kind = repo_id.rsplit("-", maxsplit=1) assert repo_id in [ "TeoWenShen/icefall-asr-csj-pruned-transducer-stateless7-streaming-230208" ], repo_id assert kind in ("fluent", "disfluent"), kind encoder_model = _get_nn_model_filename( repo_id=repo_id, filename="encoder_jit_trace.pt", subfolder=f"exp_{kind}" ) decoder_model = _get_nn_model_filename( repo_id=repo_id, filename="decoder_jit_trace.pt", subfolder=f"exp_{kind}" ) joiner_model = _get_nn_model_filename( repo_id=repo_id, filename="joiner_jit_trace.pt", subfolder=f"exp_{kind}" ) tokens = _get_token_filename(repo_id=repo_id) feat_config = sherpa.FeatureConfig() feat_config.fbank_opts.frame_opts.samp_freq = sample_rate feat_config.fbank_opts.mel_opts.num_bins = 80 feat_config.fbank_opts.frame_opts.dither = 0 config = sherpa.OnlineRecognizerConfig( nn_model="", encoder_model=encoder_model, decoder_model=decoder_model, joiner_model=joiner_model, tokens=tokens, use_gpu=False, feat_config=feat_config, decoding_method=decoding_method, num_active_paths=num_active_paths, chunk_size=32, ) recognizer = sherpa.OnlineRecognizer(config) return recognizer @lru_cache(maxsize=10) def _get_gigaspeech_pre_trained_model_onnx( repo_id: str, decoding_method: str, num_active_paths: int, ) -> sherpa_onnx.OfflineRecognizer: assert repo_id in [ "yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17", ], repo_id encoder_model = _get_nn_model_filename( repo_id=repo_id, filename="encoder-epoch-30-avg-9.onnx", subfolder="exp", ) decoder_model = _get_nn_model_filename( repo_id=repo_id, filename="decoder-epoch-30-avg-9.onnx", subfolder="exp", ) joiner_model = _get_nn_model_filename( repo_id=repo_id, filename="joiner-epoch-30-avg-9.onnx", subfolder="exp", ) tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_500") recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( tokens=tokens, encoder=encoder_model, decoder=decoder_model, joiner=joiner_model, num_threads=2, sample_rate=16000, feature_dim=80, decoding_method=decoding_method, max_active_paths=num_active_paths, ) return recognizer @lru_cache(maxsize=10) def _get_streaming_paraformer_zh_yue_en_pre_trained_model( repo_id: str, decoding_method: str, num_active_paths: int, ) -> sherpa_onnx.OnlineRecognizer: assert repo_id in [ "csukuangfj/sherpa-onnx-streaming-paraformer-trilingual-zh-cantonese-en", ], repo_id encoder_model = _get_nn_model_filename( repo_id=repo_id, filename="encoder.int8.onnx", subfolder=".", ) decoder_model = _get_nn_model_filename( repo_id=repo_id, filename="decoder.int8.onnx", subfolder=".", ) tokens = _get_token_filename(repo_id=repo_id, subfolder=".") recognizer = sherpa_onnx.OnlineRecognizer.from_paraformer( tokens=tokens, encoder=encoder_model, decoder=decoder_model, num_threads=2, sample_rate=16000, feature_dim=80, decoding_method=decoding_method, ) return recognizer @lru_cache(maxsize=10) def _get_paraformer_en_pre_trained_model( repo_id: str, decoding_method: str, num_active_paths: int, ) -> sherpa_onnx.OfflineRecognizer: assert repo_id in [ "yujinqiu/sherpa-onnx-paraformer-en-2023-10-24", ], repo_id nn_model = _get_nn_model_filename( repo_id=repo_id, filename="model.int8.onnx", subfolder=".", ) tokens = _get_token_filename( repo_id=repo_id, filename="new_tokens.txt", subfolder="." ) recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer( paraformer=nn_model, tokens=tokens, num_threads=2, sample_rate=sample_rate, feature_dim=80, decoding_method="greedy_search", debug=False, ) return recognizer @lru_cache(maxsize=5) def _get_chinese_dialect_models( repo_id: str, decoding_method: str, num_active_paths: int ) -> sherpa_onnx.OfflineRecognizer: assert repo_id in [ "csukuangfj/sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04", ], repo_id nn_model = _get_nn_model_filename( repo_id=repo_id, filename="model.int8.onnx", subfolder=".", ) tokens = _get_token_filename(repo_id=repo_id, subfolder=".") recognizer = sherpa_onnx.OfflineRecognizer.from_telespeech_ctc( model=nn_model, tokens=tokens, num_threads=2, ) return recognizer @lru_cache(maxsize=10) def _get_sense_voice_pre_trained_model( repo_id: str, decoding_method: str, num_active_paths: int, ) -> sherpa_onnx.OfflineRecognizer: assert repo_id in [ "csukuangfj/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17", ], repo_id nn_model = _get_nn_model_filename( repo_id=repo_id, filename="model.int8.onnx", subfolder=".", ) tokens = _get_token_filename(repo_id=repo_id, subfolder=".") recognizer = sherpa_onnx.OfflineRecognizer.from_sense_voice( model=nn_model, tokens=tokens, num_threads=2, sample_rate=sample_rate, feature_dim=80, decoding_method="greedy_search", debug=True, use_itn=True, ) return recognizer @lru_cache(maxsize=10) def _get_paraformer_pre_trained_model( repo_id: str, decoding_method: str, num_active_paths: int, ) -> sherpa_onnx.OfflineRecognizer: assert repo_id in [ "csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28", "csukuangfj/sherpa-onnx-paraformer-zh-2024-03-09", "csukuangfj/sherpa-onnx-paraformer-zh-small-2024-03-09", "csukuangfj/sherpa-onnx-paraformer-trilingual-zh-cantonese-en", "csukuangfj/sherpa-onnx-paraformer-en-2024-03-09", ], repo_id nn_model = _get_nn_model_filename( repo_id=repo_id, filename="model.int8.onnx", subfolder=".", ) tokens = _get_token_filename(repo_id=repo_id, subfolder=".") recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer( paraformer=nn_model, tokens=tokens, num_threads=2, sample_rate=sample_rate, feature_dim=80, decoding_method="greedy_search", debug=False, ) return recognizer def _get_aishell_pre_trained_model( repo_id: str, decoding_method: str, num_active_paths: int, ) -> sherpa_onnx.OfflineRecognizer: assert repo_id in ( "zrjin/icefall-asr-aishell-zipformer-large-2023-10-24", "zrjin/icefall-asr-aishell-zipformer-small-2023-10-24", "zrjin/icefall-asr-aishell-zipformer-2023-10-24", ), repo_id if repo_id == "zrjin/icefall-asr-aishell-zipformer-large-2023-10-24": epoch = 56 avg = 23 elif repo_id == "zrjin/icefall-asr-aishell-zipformer-small-2023-10-24": epoch = 55 avg = 21 elif repo_id == "zrjin/icefall-asr-aishell-zipformer-2023-10-24": epoch = 55 avg = 17 encoder_model = _get_nn_model_filename( repo_id=repo_id, filename=f"encoder-epoch-{epoch}-avg-{avg}.onnx", subfolder="exp", ) decoder_model = _get_nn_model_filename( repo_id=repo_id, filename=f"decoder-epoch-{epoch}-avg-{avg}.onnx", subfolder="exp", ) joiner_model = _get_nn_model_filename( repo_id=repo_id, filename=f"joiner-epoch-{epoch}-avg-{avg}.onnx", subfolder="exp", ) tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_char") recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( tokens=tokens, encoder=encoder_model, decoder=decoder_model, joiner=joiner_model, num_threads=2, sample_rate=16000, feature_dim=80, decoding_method=decoding_method, max_active_paths=num_active_paths, ) return recognizer @lru_cache(maxsize=2) def get_punct_model() -> sherpa_onnx.OfflinePunctuation: model = _get_nn_model_filename( repo_id="csukuangfj/sherpa-onnx-punct-ct-transformer-zh-en-vocab272727-2024-04-12", filename="model.onnx", subfolder=".", ) config = sherpa_onnx.OfflinePunctuationConfig( model=sherpa_onnx.OfflinePunctuationModelConfig(ct_transformer=model), ) punct = sherpa_onnx.OfflinePunctuation(config) return punct def _get_multi_zh_hans_pre_trained_model( repo_id: str, decoding_method: str, num_active_paths: int, ) -> sherpa_onnx.OfflineRecognizer: assert repo_id in ("zrjin/sherpa-onnx-zipformer-multi-zh-hans-2023-9-2",), repo_id encoder_model = _get_nn_model_filename( repo_id=repo_id, filename="encoder-epoch-20-avg-1.onnx", subfolder=".", ) decoder_model = _get_nn_model_filename( repo_id=repo_id, filename="decoder-epoch-20-avg-1.onnx", subfolder=".", ) joiner_model = _get_nn_model_filename( repo_id=repo_id, filename="joiner-epoch-20-avg-1.onnx", subfolder=".", ) tokens = _get_token_filename(repo_id=repo_id, subfolder=".") recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( tokens=tokens, encoder=encoder_model, decoder=decoder_model, joiner=joiner_model, num_threads=2, sample_rate=16000, feature_dim=80, decoding_method=decoding_method, max_active_paths=num_active_paths, ) return recognizer chinese_dialect_models = { "csukuangfj/sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04": _get_chinese_dialect_models, } chinese_models = { "csukuangfj/sherpa-onnx-paraformer-zh-2024-03-09": _get_paraformer_pre_trained_model, "luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2": _get_wenetspeech_pre_trained_model, # noqa "csukuangfj/sherpa-onnx-paraformer-zh-small-2024-03-09": _get_paraformer_pre_trained_model, "zrjin/sherpa-onnx-zipformer-multi-zh-hans-2023-9-2": _get_multi_zh_hans_pre_trained_model, # noqa "zrjin/icefall-asr-aishell-zipformer-large-2023-10-24": _get_aishell_pre_trained_model, # noqa "zrjin/icefall-asr-aishell-zipformer-small-2023-10-24": _get_aishell_pre_trained_model, # noqa "zrjin/icefall-asr-aishell-zipformer-2023-10-24": _get_aishell_pre_trained_model, # noqa "desh2608/icefall-asr-alimeeting-pruned-transducer-stateless7": _get_alimeeting_pre_trained_model, "yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-A-2022-07-12": _get_aishell2_pretrained_model, # noqa "yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12": _get_aishell2_pretrained_model, # noqa "luomingshuang/icefall_asr_aidatatang-200zh_pruned_transducer_stateless2": _get_aidatatang_200zh_pretrained_mode, # noqa "luomingshuang/icefall_asr_alimeeting_pruned_transducer_stateless2": _get_alimeeting_pre_trained_model, # noqa "csukuangfj/wenet-chinese-model": _get_wenet_model, # "csukuangfj/icefall-asr-wenetspeech-lstm-transducer-stateless-2022-10-14": _get_lstm_transducer_model, } english_models = { "whisper-tiny.en": _get_whisper_model, "moonshine-tiny": _get_moonshine_model, "moonshine-base": _get_moonshine_model, "whisper-base.en": _get_whisper_model, "whisper-small.en": _get_whisper_model, "csukuangfj/sherpa-onnx-nemo-parakeet_tdt_ctc_110m-en-36000": _get_sherpa_onnx_nemo_ctc_models, "csukuangfj/sherpa-onnx-nemo-parakeet_tdt_transducer_110m-en-36000": _get_sherpa_onnx_nemo_transducer_models, # "whisper-medium.en": _get_whisper_model, "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-large": _get_sherpa_onnx_offline_zipformer_pre_trained_model, "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-medium": _get_sherpa_onnx_offline_zipformer_pre_trained_model, "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-small": _get_sherpa_onnx_offline_zipformer_pre_trained_model, "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-large-punct-case": _get_sherpa_onnx_offline_zipformer_pre_trained_model, "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-medium-punct-case": _get_sherpa_onnx_offline_zipformer_pre_trained_model, "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-small-punct-case": _get_sherpa_onnx_offline_zipformer_pre_trained_model, "csukuangfj/sherpa-onnx-paraformer-en-2024-03-09": _get_paraformer_pre_trained_model, "yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17": _get_gigaspeech_pre_trained_model_onnx, # noqa "wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2": _get_gigaspeech_pre_trained_model, # noqa "yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04": _get_english_model, # noqa "yfyeung/icefall-asr-finetune-mux-pruned_transducer_stateless7-2023-05-19": _get_english_model, # noqa "WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02": _get_english_model, # noqa "csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless8-2022-11-14": _get_english_model, # noqa "csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11": _get_english_model, # noqa "csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13": _get_english_model, # noqa "yujinqiu/sherpa-onnx-paraformer-en-2023-10-24": _get_paraformer_en_pre_trained_model, "Zengwei/icefall-asr-librispeech-zipformer-large-2023-05-16": _get_english_model, # noqa "Zengwei/icefall-asr-librispeech-zipformer-2023-05-15": _get_english_model, # noqa "Zengwei/icefall-asr-librispeech-zipformer-small-2023-05-16": _get_english_model, # noqa "videodanchik/icefall-asr-tedlium3-conformer-ctc2": _get_english_model, "pkufool/icefall_asr_librispeech_conformer_ctc": _get_english_model, "WayneWiser/icefall-asr-librispeech-conformer-ctc2-jit-bpe-500-2022-07-21": _get_english_model, "csukuangfj/wenet-english-model": _get_wenet_model, } chinese_english_mixed_models = { "csukuangfj/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20": _get_streaming_zipformer_pre_trained_model, "zrjin/icefall-asr-zipformer-multi-zh-en-2023-11-22": _get_chinese_english_mixed_model_onnx, "csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28": _get_paraformer_pre_trained_model, "ptrnull/icefall-asr-conv-emformer-transducer-stateless2-zh": _get_chinese_english_mixed_model, "luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5": _get_chinese_english_mixed_model, # noqa } tibetan_models = { "syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless7-2022-12-02": _get_tibetan_pre_trained_model, # noqa "syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29": _get_tibetan_pre_trained_model, # noqa } arabic_models = { "AmirHussein/icefall-asr-mgb2-conformer_ctc-2022-27-06": _get_arabic_pre_trained_model, # noqa } german_models = { "csukuangfj/wav2vec2.0-torchaudio": _get_german_pre_trained_model, } french_models = { "shaojieli/sherpa-onnx-streaming-zipformer-fr-2023-04-14": _get_french_pre_trained_model, } japanese_models = { "reazon-research/reazonspeech-k2-v2": _get_offline_pre_trained_model, # "TeoWenShen/icefall-asr-csj-pruned-transducer-stateless7-streaming-230208-fluent": _get_japanese_pre_trained_model, # "TeoWenShen/icefall-asr-csj-pruned-transducer-stateless7-streaming-230208-disfluent": _get_japanese_pre_trained_model, } russian_models = { "csukuangfj/sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24": _get_russian_pre_trained_model, "csukuangfj/sherpa-onnx-nemo-ctc-giga-am-russian-2024-10-24": _get_russian_pre_trained_model_ctc, "alphacep/vosk-model-ru": _get_russian_pre_trained_model, "alphacep/vosk-model-small-ru": _get_russian_pre_trained_model, } chinese_cantonese_english_models = { "csukuangfj/sherpa-onnx-paraformer-trilingual-zh-cantonese-en": _get_paraformer_pre_trained_model, "csukuangfj/sherpa-onnx-streaming-paraformer-trilingual-zh-cantonese-en": _get_streaming_paraformer_zh_yue_en_pre_trained_model, } chinese_cantonese_english_japanese_korean_models = { "csukuangfj/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17": _get_sense_voice_pre_trained_model, } cantonese_models = { "zrjin/icefall-asr-mdcc-zipformer-2024-03-11": _get_zrjin_cantonese_pre_trained_model, } korean_models = { "k2-fsa/sherpa-onnx-zipformer-korean-2024-06-24": _get_offline_pre_trained_model, "k2-fsa/sherpa-onnx-streaming-zipformer-korean-2024-06-16": _get_streaming_zipformer_pre_trained_model, } thai_models = { "yfyeung/icefall-asr-gigaspeech2-th-zipformer-2024-06-20": _get_yifan_thai_pretrained_model, } all_models = { **chinese_models, **english_models, **chinese_english_mixed_models, **chinese_cantonese_english_models, **chinese_cantonese_english_japanese_korean_models, **cantonese_models, **japanese_models, **tibetan_models, **arabic_models, **german_models, **french_models, **russian_models, **korean_models, **thai_models, } language_to_models = { "超多种中文方言": list(chinese_dialect_models.keys()), "Chinese": list(chinese_models.keys()), "English": list(english_models.keys()), "Chinese+English": list(chinese_english_mixed_models.keys()), "Chinese+English+Cantonese": list(chinese_cantonese_english_models.keys()), "Chinese+English+Cantonese+Japanese+Korean": list( chinese_cantonese_english_japanese_korean_models.keys() ), "Cantonese": list(cantonese_models.keys()), "Japanese": list(japanese_models.keys()), "Tibetan": list(tibetan_models.keys()), "Arabic": list(arabic_models.keys()), "German": list(german_models.keys()), "French": list(french_models.keys()), "Russian": list(russian_models.keys()), "Korean": list(korean_models.keys()), "Thai": list(thai_models.keys()), }