csukuangfj's picture
fix a typo
a36fe6a
raw
history blame
56.8 kB
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from functools import lru_cache
from typing import Union
import torch
import torchaudio
from huggingface_hub import hf_hub_download
os.system(
"cp -v /usr/local/lib/python3.8/site-packages/k2/lib/*.so //usr/local/lib/python3.8/site-packages/sherpa/lib/"
)
os.system(
"cp -v /home/user/.local/lib/python3.8/site-packages/k2/lib/*.so /home/user/.local/lib/python3.8/site-packages/sherpa/lib/"
)
import k2 # noqa
import sherpa
import sherpa_onnx
import numpy as np
from typing import Tuple
import wave
sample_rate = 16000
def read_wave(wave_filename: str) -> Tuple[np.ndarray, int]:
"""
Args:
wave_filename:
Path to a wave file. It should be single channel and each sample should
be 16-bit. Its sample rate does not need to be 16kHz.
Returns:
Return a tuple containing:
- A 1-D array of dtype np.float32 containing the samples, which are
normalized to the range [-1, 1].
- sample rate of the wave file
"""
with wave.open(wave_filename) as f:
assert f.getnchannels() == 1, f.getnchannels()
assert f.getsampwidth() == 2, f.getsampwidth() # it is in bytes
num_samples = f.getnframes()
samples = f.readframes(num_samples)
samples_int16 = np.frombuffer(samples, dtype=np.int16)
samples_float32 = samples_int16.astype(np.float32)
samples_float32 = samples_float32 / 32768
return samples_float32, f.getframerate()
def decode_offline_recognizer(
recognizer: sherpa.OfflineRecognizer,
filename: str,
) -> str:
s = recognizer.create_stream()
s.accept_wave_file(filename)
recognizer.decode_stream(s)
text = s.result.text.strip()
# return text.lower()
return text
def decode_online_recognizer(
recognizer: sherpa.OnlineRecognizer,
filename: str,
) -> str:
samples, actual_sample_rate = torchaudio.load(filename)
assert sample_rate == actual_sample_rate, (
sample_rate,
actual_sample_rate,
)
samples = samples[0].contiguous()
s = recognizer.create_stream()
tail_padding = torch.zeros(int(sample_rate * 0.3), dtype=torch.float32)
s.accept_waveform(sample_rate, samples)
s.accept_waveform(sample_rate, tail_padding)
s.input_finished()
while recognizer.is_ready(s):
recognizer.decode_stream(s)
text = recognizer.get_result(s).text
# return text.strip().lower()
return text.strip()
def decode_offline_recognizer_sherpa_onnx(
recognizer: sherpa_onnx.OfflineRecognizer,
filename: str,
) -> str:
s = recognizer.create_stream()
samples, sample_rate = read_wave(filename)
s.accept_waveform(sample_rate, samples)
recognizer.decode_stream(s)
# return s.result.text.lower()
return s.result.text
def decode_online_recognizer_sherpa_onnx(
recognizer: sherpa_onnx.OnlineRecognizer,
filename: str,
) -> str:
s = recognizer.create_stream()
samples, sample_rate = read_wave(filename)
s.accept_waveform(sample_rate, samples)
tail_paddings = np.zeros(int(0.3 * sample_rate), dtype=np.float32)
s.accept_waveform(sample_rate, tail_paddings)
s.input_finished()
while recognizer.is_ready(s):
recognizer.decode_stream(s)
# return recognizer.get_result(s).lower()
return recognizer.get_result(s)
def decode(
recognizer: Union[
sherpa.OfflineRecognizer,
sherpa.OnlineRecognizer,
sherpa_onnx.OfflineRecognizer,
sherpa_onnx.OnlineRecognizer,
],
filename: str,
) -> str:
if isinstance(recognizer, sherpa.OfflineRecognizer):
return decode_offline_recognizer(recognizer, filename)
elif isinstance(recognizer, sherpa.OnlineRecognizer):
return decode_online_recognizer(recognizer, filename)
elif isinstance(recognizer, sherpa_onnx.OfflineRecognizer):
return decode_offline_recognizer_sherpa_onnx(recognizer, filename)
elif isinstance(recognizer, sherpa_onnx.OnlineRecognizer):
return decode_online_recognizer_sherpa_onnx(recognizer, filename)
else:
raise ValueError(f"Unknown recognizer type {type(recognizer)}")
@lru_cache(maxsize=30)
def get_pretrained_model(
repo_id: str,
decoding_method: str,
num_active_paths: int,
) -> Union[sherpa.OfflineRecognizer, sherpa.OnlineRecognizer]:
if repo_id in chinese_models:
return chinese_models[repo_id](
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
)
elif repo_id in chinese_dialect_models:
return chinese_dialect_models[repo_id](
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
)
elif repo_id in english_models:
return english_models[repo_id](
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
)
elif repo_id in chinese_english_mixed_models:
return chinese_english_mixed_models[repo_id](
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
)
elif repo_id in chinese_cantonese_english_models:
return chinese_cantonese_english_models[repo_id](
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
)
elif repo_id in chinese_cantonese_english_japanese_korean_models:
return chinese_cantonese_english_japanese_korean_models[repo_id](
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
)
elif repo_id in cantonese_models:
return cantonese_models[repo_id](
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
)
elif repo_id in tibetan_models:
return tibetan_models[repo_id](
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
)
elif repo_id in arabic_models:
return arabic_models[repo_id](
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
)
elif repo_id in german_models:
return german_models[repo_id](
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
)
elif repo_id in french_models:
return french_models[repo_id](
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
)
elif repo_id in japanese_models:
return japanese_models[repo_id](
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
)
elif repo_id in russian_models:
return russian_models[repo_id](
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
)
elif repo_id in korean_models:
return korean_models[repo_id](
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
)
elif repo_id in thai_models:
return thai_models[repo_id](
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
)
else:
raise ValueError(f"Unsupported repo_id: {repo_id}")
def _get_nn_model_filename(
repo_id: str,
filename: str,
subfolder: str = "exp",
) -> str:
nn_model_filename = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder,
)
return nn_model_filename
def _get_bpe_model_filename(
repo_id: str,
filename: str = "bpe.model",
subfolder: str = "data/lang_bpe_500",
) -> str:
bpe_model_filename = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder,
)
return bpe_model_filename
def _get_token_filename(
repo_id: str,
filename: str = "tokens.txt",
subfolder: str = "data/lang_char",
) -> str:
token_filename = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder,
)
return token_filename
@lru_cache(maxsize=10)
def _get_aishell2_pretrained_model(
repo_id: str,
decoding_method: str,
num_active_paths: int,
) -> sherpa.OfflineRecognizer:
assert repo_id in [
# context-size 1
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-A-2022-07-12", # noqa
# context-size 2
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12", # noqa
], repo_id
nn_model = _get_nn_model_filename(
repo_id=repo_id,
filename="cpu_jit.pt",
)
tokens = _get_token_filename(repo_id=repo_id)
feat_config = sherpa.FeatureConfig()
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
feat_config.fbank_opts.mel_opts.num_bins = 80
feat_config.fbank_opts.frame_opts.dither = 0
config = sherpa.OfflineRecognizerConfig(
nn_model=nn_model,
tokens=tokens,
use_gpu=False,
feat_config=feat_config,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
)
recognizer = sherpa.OfflineRecognizer(config)
return recognizer
@lru_cache(maxsize=10)
def _get_offline_pre_trained_model(
repo_id: str, decoding_method: str, num_active_paths: int
) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in (
"k2-fsa/sherpa-onnx-zipformer-korean-2024-06-24",
"reazon-research/reazonspeech-k2-v2",
), repo_id
encoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="encoder-epoch-99-avg-1.int8.onnx",
subfolder=".",
)
decoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="decoder-epoch-99-avg-1.onnx",
subfolder=".",
)
joiner_model = _get_nn_model_filename(
repo_id=repo_id,
filename="joiner-epoch-99-avg-1.onnx",
subfolder=".",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder=".")
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
tokens=tokens,
encoder=encoder_model,
decoder=decoder_model,
joiner=joiner_model,
num_threads=2,
sample_rate=16000,
feature_dim=80,
decoding_method=decoding_method,
)
return recognizer
@lru_cache(maxsize=10)
def _get_yifan_thai_pretrained_model(
repo_id: str, decoding_method: str, num_active_paths: int
) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in (
"yfyeung/icefall-asr-gigaspeech2-th-zipformer-2024-06-20",
), repo_id
encoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="encoder-epoch-12-avg-5.int8.onnx",
subfolder="exp",
)
decoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="decoder-epoch-12-avg-5.onnx",
subfolder="exp",
)
joiner_model = _get_nn_model_filename(
repo_id=repo_id,
filename="joiner-epoch-12-avg-5.int8.onnx",
subfolder="exp",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_2000")
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
tokens=tokens,
encoder=encoder_model,
decoder=decoder_model,
joiner=joiner_model,
num_threads=2,
sample_rate=16000,
feature_dim=80,
decoding_method=decoding_method,
)
return recognizer
@lru_cache(maxsize=10)
def _get_zrjin_cantonese_pre_trained_model(
repo_id: str, decoding_method: str, num_active_paths: int
) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in ("zrjin/icefall-asr-mdcc-zipformer-2024-03-11",), repo_id
encoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="encoder-epoch-45-avg-35.int8.onnx",
subfolder="exp",
)
decoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="decoder-epoch-45-avg-35.onnx",
subfolder="exp",
)
joiner_model = _get_nn_model_filename(
repo_id=repo_id,
filename="joiner-epoch-45-avg-35.int8.onnx",
subfolder="exp",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_char")
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
tokens=tokens,
encoder=encoder_model,
decoder=decoder_model,
joiner=joiner_model,
num_threads=2,
sample_rate=16000,
feature_dim=80,
decoding_method=decoding_method,
)
return recognizer
@lru_cache(maxsize=10)
def _get_russian_pre_trained_model_ctc(
repo_id: str, decoding_method: str, num_active_paths: int
) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in (
"csukuangfj/sherpa-onnx-nemo-ctc-giga-am-russian-2024-10-24",
), repo_id
model = _get_nn_model_filename(
repo_id=repo_id,
filename="model.int8.onnx",
subfolder=".",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder=".")
recognizer = sherpa_onnx.OfflineRecognizer.from_nemo_ctc(
model=model,
tokens=tokens,
num_threads=2,
)
return recognizer
@lru_cache(maxsize=10)
def _get_russian_pre_trained_model(
repo_id: str, decoding_method: str, num_active_paths: int
) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in (
"alphacep/vosk-model-ru",
"alphacep/vosk-model-small-ru",
"csukuangfj/sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24",
), repo_id
if repo_id == "alphacep/vosk-model-ru":
model_dir = "am-onnx"
encoder = "encoder.onnx"
model_type = "transducer"
elif repo_id == "alphacep/vosk-model-small-ru":
model_dir = "am"
encoder = "encoder.onnx"
model_type = "transducer"
elif repo_id == "csukuangfj/sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24":
model_dir = "."
encoder = "encoder.int8.onnx"
model_type = "nemo_transducer"
encoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename=encoder,
subfolder=model_dir,
)
decoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="decoder.onnx",
subfolder=model_dir,
)
joiner_model = _get_nn_model_filename(
repo_id=repo_id,
filename="joiner.onnx",
subfolder=model_dir,
)
if repo_id == "csukuangfj/sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24":
tokens = _get_token_filename(repo_id=repo_id, subfolder=".")
else:
tokens = _get_token_filename(repo_id=repo_id, subfolder="lang")
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
tokens=tokens,
encoder=encoder_model,
decoder=decoder_model,
joiner=joiner_model,
num_threads=2,
sample_rate=16000,
feature_dim=80,
decoding_method=decoding_method,
model_type=model_type,
)
return recognizer
@lru_cache(maxsize=10)
def _get_moonshine_model(
repo_id: str, decoding_method: str, num_active_paths: int
) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in ("moonshine-tiny", "moonshine-base"), repo_id
if repo_id == "moonshine-tiny":
full_repo_id = "csukuangfj/sherpa-onnx-moonshine-tiny-en-int8"
elif repo_id == "moonshine-base":
full_repo_id = "csukuangfj/sherpa-onnx-moonshine-base-en-int8"
else:
raise ValueError(f"Unknown repo_id: {repo_id}")
preprocessor = _get_nn_model_filename(
repo_id=full_repo_id,
filename=f"preprocess.onnx",
subfolder=".",
)
encoder = _get_nn_model_filename(
repo_id=full_repo_id,
filename=f"encode.int8.onnx",
subfolder=".",
)
uncached_decoder = _get_nn_model_filename(
repo_id=full_repo_id,
filename=f"uncached_decode.int8.onnx",
subfolder=".",
)
cached_decoder = _get_nn_model_filename(
repo_id=full_repo_id,
filename=f"cached_decode.int8.onnx",
subfolder=".",
)
tokens = _get_token_filename(
repo_id=full_repo_id,
subfolder=".",
filename="tokens.txt",
)
recognizer = sherpa_onnx.OfflineRecognizer.from_moonshine(
preprocessor=preprocessor,
encoder=encoder,
uncached_decoder=uncached_decoder,
cached_decoder=cached_decoder,
tokens=tokens,
num_threads=2,
)
return recognizer
@lru_cache(maxsize=10)
def _get_whisper_model(
repo_id: str, decoding_method: str, num_active_paths: int
) -> sherpa_onnx.OfflineRecognizer:
name = repo_id.split("-")[1]
assert name in ("tiny.en", "base.en", "small.en", "medium.en"), repo_id
full_repo_id = "csukuangfj/sherpa-onnx-whisper-" + name
encoder = _get_nn_model_filename(
repo_id=full_repo_id,
filename=f"{name}-encoder.int8.onnx",
subfolder=".",
)
decoder = _get_nn_model_filename(
repo_id=full_repo_id,
filename=f"{name}-decoder.int8.onnx",
subfolder=".",
)
tokens = _get_token_filename(
repo_id=full_repo_id, subfolder=".", filename=f"{name}-tokens.txt"
)
recognizer = sherpa_onnx.OfflineRecognizer.from_whisper(
encoder=encoder,
decoder=decoder,
tokens=tokens,
num_threads=2,
)
return recognizer
@lru_cache(maxsize=10)
def _get_gigaspeech_pre_trained_model(
repo_id: str,
decoding_method: str,
num_active_paths: int,
) -> sherpa.OfflineRecognizer:
assert repo_id in [
"wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2",
], repo_id
nn_model = _get_nn_model_filename(
repo_id=repo_id,
filename="cpu_jit-iter-3488000-avg-20.pt",
)
tokens = "./giga-tokens.txt"
feat_config = sherpa.FeatureConfig()
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
feat_config.fbank_opts.mel_opts.num_bins = 80
feat_config.fbank_opts.frame_opts.dither = 0
config = sherpa.OfflineRecognizerConfig(
nn_model=nn_model,
tokens=tokens,
use_gpu=False,
feat_config=feat_config,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
)
recognizer = sherpa.OfflineRecognizer(config)
return recognizer
@lru_cache(maxsize=10)
def _get_english_model(
repo_id: str,
decoding_method: str,
num_active_paths: int,
) -> sherpa.OfflineRecognizer:
assert repo_id in [
"WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02", # noqa
"yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04", # noqa
"yfyeung/icefall-asr-finetune-mux-pruned_transducer_stateless7-2023-05-19", # noqa
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13", # noqa
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11", # noqa
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless8-2022-11-14", # noqa
"Zengwei/icefall-asr-librispeech-zipformer-large-2023-05-16", # noqa
"Zengwei/icefall-asr-librispeech-zipformer-2023-05-15", # noqa
"Zengwei/icefall-asr-librispeech-zipformer-small-2023-05-16", # noqa
"videodanchik/icefall-asr-tedlium3-conformer-ctc2",
"pkufool/icefall_asr_librispeech_conformer_ctc",
"WayneWiser/icefall-asr-librispeech-conformer-ctc2-jit-bpe-500-2022-07-21",
], repo_id
filename = "cpu_jit.pt"
if (
repo_id
== "csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11"
):
filename = "cpu_jit-torch-1.10.0.pt"
if (
repo_id
== "WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02"
):
filename = "cpu_jit-torch-1.10.pt"
if (
repo_id
== "yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04"
):
filename = "cpu_jit-epoch-30-avg-4.pt"
if (
repo_id
== "yfyeung/icefall-asr-finetune-mux-pruned_transducer_stateless7-2023-05-19"
):
filename = "cpu_jit-epoch-20-avg-5.pt"
if repo_id in (
"Zengwei/icefall-asr-librispeech-zipformer-large-2023-05-16",
"Zengwei/icefall-asr-librispeech-zipformer-2023-05-15",
"Zengwei/icefall-asr-librispeech-zipformer-small-2023-05-16",
):
filename = "jit_script.pt"
nn_model = _get_nn_model_filename(
repo_id=repo_id,
filename=filename,
)
subfolder = "data/lang_bpe_500"
if repo_id in (
"videodanchik/icefall-asr-tedlium3-conformer-ctc2",
"pkufool/icefall_asr_librispeech_conformer_ctc",
):
subfolder = "data/lang_bpe"
tokens = _get_token_filename(repo_id=repo_id, subfolder=subfolder)
feat_config = sherpa.FeatureConfig()
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
feat_config.fbank_opts.mel_opts.num_bins = 80
feat_config.fbank_opts.frame_opts.dither = 0
config = sherpa.OfflineRecognizerConfig(
nn_model=nn_model,
tokens=tokens,
use_gpu=False,
feat_config=feat_config,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
)
recognizer = sherpa.OfflineRecognizer(config)
return recognizer
@lru_cache(maxsize=10)
def _get_wenetspeech_pre_trained_model(
repo_id: str,
decoding_method: str,
num_active_paths: int,
):
assert repo_id in [
"luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2",
], repo_id
nn_model = _get_nn_model_filename(
repo_id=repo_id,
filename="cpu_jit_epoch_10_avg_2_torch_1.7.1.pt",
)
tokens = _get_token_filename(repo_id=repo_id)
feat_config = sherpa.FeatureConfig()
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
feat_config.fbank_opts.mel_opts.num_bins = 80
feat_config.fbank_opts.frame_opts.dither = 0
config = sherpa.OfflineRecognizerConfig(
nn_model=nn_model,
tokens=tokens,
use_gpu=False,
feat_config=feat_config,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
)
recognizer = sherpa.OfflineRecognizer(config)
return recognizer
@lru_cache(maxsize=10)
def _get_chinese_english_mixed_model_onnx(
repo_id: str,
decoding_method: str,
num_active_paths: int,
) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in [
"zrjin/icefall-asr-zipformer-multi-zh-en-2023-11-22",
], repo_id
encoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="encoder-epoch-34-avg-19.int8.onnx",
subfolder="exp",
)
decoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="encoder-epoch-34-avg-19.onnx",
subfolder="exp",
)
joiner_model = _get_nn_model_filename(
repo_id=repo_id,
filename="joiner-epoch-34-avg-19.int8.onnx",
subfolder="exp",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bbpe_2000")
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
tokens=tokens,
encoder=encoder_model,
decoder=decoder_model,
joiner=joiner_model,
num_threads=2,
sample_rate=16000,
feature_dim=80,
decoding_method=decoding_method,
max_active_paths=num_active_paths,
)
return recognizer
@lru_cache(maxsize=10)
def _get_chinese_english_mixed_model(
repo_id: str,
decoding_method: str,
num_active_paths: int,
) -> sherpa.OfflineRecognizer:
assert repo_id in [
"luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5",
"ptrnull/icefall-asr-conv-emformer-transducer-stateless2-zh",
], repo_id
if repo_id == "luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5":
filename = "cpu_jit.pt"
subfolder = "data/lang_char"
elif repo_id == "ptrnull/icefall-asr-conv-emformer-transducer-stateless2-zh":
filename = "cpu_jit-epoch-11-avg-1.pt"
subfolder = "data/lang_char_bpe"
nn_model = _get_nn_model_filename(
repo_id=repo_id,
filename=filename,
)
tokens = _get_token_filename(repo_id=repo_id, subfolder=subfolder)
feat_config = sherpa.FeatureConfig()
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
feat_config.fbank_opts.mel_opts.num_bins = 80
feat_config.fbank_opts.frame_opts.dither = 0
config = sherpa.OfflineRecognizerConfig(
nn_model=nn_model,
tokens=tokens,
use_gpu=False,
feat_config=feat_config,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
)
recognizer = sherpa.OfflineRecognizer(config)
return recognizer
@lru_cache(maxsize=10)
def _get_alimeeting_pre_trained_model(
repo_id: str,
decoding_method: str,
num_active_paths: int,
):
assert repo_id in [
"desh2608/icefall-asr-alimeeting-pruned-transducer-stateless7",
"luomingshuang/icefall_asr_alimeeting_pruned_transducer_stateless2",
], repo_id
if repo_id == "desh2608/icefall-asr-alimeeting-pruned-transducer-stateless7":
filename = "cpu_jit.pt"
elif repo_id == "luomingshuang/icefall_asr_alimeeting_pruned_transducer_stateless2":
filename = "cpu_jit_torch_1.7.1.pt"
nn_model = _get_nn_model_filename(
repo_id=repo_id,
filename=filename,
)
tokens = _get_token_filename(repo_id=repo_id)
feat_config = sherpa.FeatureConfig()
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
feat_config.fbank_opts.mel_opts.num_bins = 80
feat_config.fbank_opts.frame_opts.dither = 0
config = sherpa.OfflineRecognizerConfig(
nn_model=nn_model,
tokens=tokens,
use_gpu=False,
feat_config=feat_config,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
)
recognizer = sherpa.OfflineRecognizer(config)
return recognizer
@lru_cache(maxsize=10)
def _get_wenet_model(
repo_id: str,
decoding_method: str,
num_active_paths: int,
):
assert repo_id in [
"csukuangfj/wenet-chinese-model",
"csukuangfj/wenet-english-model",
], repo_id
nn_model = _get_nn_model_filename(
repo_id=repo_id,
filename="final.zip",
subfolder=".",
)
tokens = _get_token_filename(
repo_id=repo_id,
filename="units.txt",
subfolder=".",
)
feat_config = sherpa.FeatureConfig(normalize_samples=False)
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
feat_config.fbank_opts.mel_opts.num_bins = 80
feat_config.fbank_opts.frame_opts.dither = 0
config = sherpa.OfflineRecognizerConfig(
nn_model=nn_model,
tokens=tokens,
use_gpu=False,
feat_config=feat_config,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
)
recognizer = sherpa.OfflineRecognizer(config)
return recognizer
@lru_cache(maxsize=10)
def _get_aidatatang_200zh_pretrained_mode(
repo_id: str,
decoding_method: str,
num_active_paths: int,
):
assert repo_id in [
"luomingshuang/icefall_asr_aidatatang-200zh_pruned_transducer_stateless2",
], repo_id
nn_model = _get_nn_model_filename(
repo_id=repo_id,
filename="cpu_jit_torch.1.7.1.pt",
)
tokens = _get_token_filename(repo_id=repo_id)
feat_config = sherpa.FeatureConfig()
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
feat_config.fbank_opts.mel_opts.num_bins = 80
feat_config.fbank_opts.frame_opts.dither = 0
config = sherpa.OfflineRecognizerConfig(
nn_model=nn_model,
tokens=tokens,
use_gpu=False,
feat_config=feat_config,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
)
recognizer = sherpa.OfflineRecognizer(config)
return recognizer
@lru_cache(maxsize=10)
def _get_tibetan_pre_trained_model(
repo_id: str,
decoding_method: str,
num_active_paths: int,
):
assert repo_id in [
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless7-2022-12-02",
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29",
], repo_id
filename = "cpu_jit.pt"
if (
repo_id
== "syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29"
):
filename = "cpu_jit-epoch-28-avg-23-torch-1.10.0.pt"
nn_model = _get_nn_model_filename(
repo_id=repo_id,
filename=filename,
)
tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_500")
feat_config = sherpa.FeatureConfig()
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
feat_config.fbank_opts.mel_opts.num_bins = 80
feat_config.fbank_opts.frame_opts.dither = 0
config = sherpa.OfflineRecognizerConfig(
nn_model=nn_model,
tokens=tokens,
use_gpu=False,
feat_config=feat_config,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
)
recognizer = sherpa.OfflineRecognizer(config)
return recognizer
@lru_cache(maxsize=10)
def _get_arabic_pre_trained_model(
repo_id: str,
decoding_method: str,
num_active_paths: int,
):
assert repo_id in [
"AmirHussein/icefall-asr-mgb2-conformer_ctc-2022-27-06",
], repo_id
nn_model = _get_nn_model_filename(
repo_id=repo_id,
filename="cpu_jit.pt",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_5000")
feat_config = sherpa.FeatureConfig()
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
feat_config.fbank_opts.mel_opts.num_bins = 80
feat_config.fbank_opts.frame_opts.dither = 0
config = sherpa.OfflineRecognizerConfig(
nn_model=nn_model,
tokens=tokens,
use_gpu=False,
feat_config=feat_config,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
)
recognizer = sherpa.OfflineRecognizer(config)
return recognizer
@lru_cache(maxsize=10)
def _get_german_pre_trained_model(
repo_id: str,
decoding_method: str,
num_active_paths: int,
):
assert repo_id in [
"csukuangfj/wav2vec2.0-torchaudio",
], repo_id
nn_model = _get_nn_model_filename(
repo_id=repo_id,
filename="voxpopuli_asr_base_10k_de.pt",
subfolder=".",
)
tokens = _get_token_filename(
repo_id=repo_id,
filename="tokens-de.txt",
subfolder=".",
)
config = sherpa.OfflineRecognizerConfig(
nn_model=nn_model,
tokens=tokens,
use_gpu=False,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
)
recognizer = sherpa.OfflineRecognizer(config)
return recognizer
@lru_cache(maxsize=10)
def _get_french_pre_trained_model(
repo_id: str,
decoding_method: str,
num_active_paths: int,
) -> sherpa_onnx.OnlineRecognizer:
assert repo_id in [
"shaojieli/sherpa-onnx-streaming-zipformer-fr-2023-04-14",
], repo_id
encoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="encoder-epoch-29-avg-9-with-averaged-model.onnx",
subfolder=".",
)
decoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="decoder-epoch-29-avg-9-with-averaged-model.onnx",
subfolder=".",
)
joiner_model = _get_nn_model_filename(
repo_id=repo_id,
filename="joiner-epoch-29-avg-9-with-averaged-model.onnx",
subfolder=".",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder=".")
recognizer = sherpa_onnx.OnlineRecognizer.from_transducer(
tokens=tokens,
encoder=encoder_model,
decoder=decoder_model,
joiner=joiner_model,
num_threads=2,
sample_rate=16000,
feature_dim=80,
decoding_method=decoding_method,
max_active_paths=num_active_paths,
)
return recognizer
@lru_cache(maxsize=10)
def _get_sherpa_onnx_nemo_transducer_models(
repo_id: str,
decoding_method: str,
num_active_paths: int,
) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in [
"csukuangfj/sherpa-onnx-nemo-parakeet_tdt_transducer_110m-en-36000",
], repo_id
encoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="encoder.onnx",
subfolder=".",
)
decoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="decoder.onnx",
subfolder=".",
)
joiner_model = _get_nn_model_filename(
repo_id=repo_id,
filename="joiner.onnx",
subfolder=".",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder=".")
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
tokens=tokens,
encoder=encoder_model,
decoder=decoder_model,
joiner=joiner_model,
num_threads=2,
sample_rate=16000,
feature_dim=80,
model_type="nemo_transducer",
decoding_method=decoding_method,
max_active_paths=num_active_paths,
)
return recognizer
@lru_cache(maxsize=10)
def _get_sherpa_onnx_nemo_ctc_models(
repo_id: str,
decoding_method: str,
num_active_paths: int,
) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in [
"csukuangfj/sherpa-onnx-nemo-parakeet_tdt_ctc_110m-en-36000",
], repo_id
model = _get_nn_model_filename(
repo_id=repo_id,
filename="model.onnx",
subfolder=".",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder=".")
recognizer = sherpa_onnx.OfflineRecognizer.from_nemo_ctc(
tokens=tokens,
model=model,
num_threads=2,
sample_rate=16000,
feature_dim=80,
)
return recognizer
@lru_cache(maxsize=10)
def _get_sherpa_onnx_offline_zipformer_pre_trained_model(
repo_id: str,
decoding_method: str,
num_active_paths: int,
) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in [
"csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-large",
"csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-medium",
"csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-small",
"csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-large-punct-case",
"csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-medium-punct-case",
"csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-small-punct-case",
], repo_id
if repo_id == "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-large":
epoch = 16
avg = 3
elif repo_id == "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-medium":
epoch = 60
avg = 20
elif repo_id == "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-small":
epoch = 90
avg = 20
elif (
repo_id
== "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-large-punct-case"
):
epoch = 16
avg = 2
elif (
repo_id
== "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-medium-punct-case"
):
epoch = 50
avg = 15
elif (
repo_id
== "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-small-punct-case"
):
epoch = 88
avg = 41
encoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename=f"encoder-epoch-{epoch}-avg-{avg}.int8.onnx",
subfolder=".",
)
decoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename=f"decoder-epoch-{epoch}-avg-{avg}.onnx",
subfolder=".",
)
joiner_model = _get_nn_model_filename(
repo_id=repo_id,
filename=f"joiner-epoch-{epoch}-avg-{avg}.int8.onnx",
subfolder=".",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder=".")
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
tokens=tokens,
encoder=encoder_model,
decoder=decoder_model,
joiner=joiner_model,
num_threads=2,
sample_rate=16000,
feature_dim=80,
decoding_method=decoding_method,
max_active_paths=num_active_paths,
)
return recognizer
@lru_cache(maxsize=10)
def _get_streaming_zipformer_pre_trained_model(
repo_id: str,
decoding_method: str,
num_active_paths: int,
) -> sherpa_onnx.OnlineRecognizer:
assert repo_id in [
"csukuangfj/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20",
"k2-fsa/sherpa-onnx-streaming-zipformer-korean-2024-06-16",
], repo_id
encoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="encoder-epoch-99-avg-1.onnx",
subfolder=".",
)
decoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="decoder-epoch-99-avg-1.onnx",
subfolder=".",
)
joiner_model = _get_nn_model_filename(
repo_id=repo_id,
filename="joiner-epoch-99-avg-1.onnx",
subfolder=".",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder=".")
recognizer = sherpa_onnx.OnlineRecognizer.from_transducer(
tokens=tokens,
encoder=encoder_model,
decoder=decoder_model,
joiner=joiner_model,
num_threads=2,
sample_rate=16000,
feature_dim=80,
decoding_method=decoding_method,
max_active_paths=num_active_paths,
)
return recognizer
@lru_cache(maxsize=10)
def _get_japanese_pre_trained_model(
repo_id: str,
decoding_method: str,
num_active_paths: int,
) -> sherpa.OnlineRecognizer:
repo_id, kind = repo_id.rsplit("-", maxsplit=1)
assert repo_id in [
"TeoWenShen/icefall-asr-csj-pruned-transducer-stateless7-streaming-230208"
], repo_id
assert kind in ("fluent", "disfluent"), kind
encoder_model = _get_nn_model_filename(
repo_id=repo_id, filename="encoder_jit_trace.pt", subfolder=f"exp_{kind}"
)
decoder_model = _get_nn_model_filename(
repo_id=repo_id, filename="decoder_jit_trace.pt", subfolder=f"exp_{kind}"
)
joiner_model = _get_nn_model_filename(
repo_id=repo_id, filename="joiner_jit_trace.pt", subfolder=f"exp_{kind}"
)
tokens = _get_token_filename(repo_id=repo_id)
feat_config = sherpa.FeatureConfig()
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
feat_config.fbank_opts.mel_opts.num_bins = 80
feat_config.fbank_opts.frame_opts.dither = 0
config = sherpa.OnlineRecognizerConfig(
nn_model="",
encoder_model=encoder_model,
decoder_model=decoder_model,
joiner_model=joiner_model,
tokens=tokens,
use_gpu=False,
feat_config=feat_config,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
chunk_size=32,
)
recognizer = sherpa.OnlineRecognizer(config)
return recognizer
@lru_cache(maxsize=10)
def _get_gigaspeech_pre_trained_model_onnx(
repo_id: str,
decoding_method: str,
num_active_paths: int,
) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in [
"yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17",
], repo_id
encoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="encoder-epoch-30-avg-9.onnx",
subfolder="exp",
)
decoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="decoder-epoch-30-avg-9.onnx",
subfolder="exp",
)
joiner_model = _get_nn_model_filename(
repo_id=repo_id,
filename="joiner-epoch-30-avg-9.onnx",
subfolder="exp",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_500")
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
tokens=tokens,
encoder=encoder_model,
decoder=decoder_model,
joiner=joiner_model,
num_threads=2,
sample_rate=16000,
feature_dim=80,
decoding_method=decoding_method,
max_active_paths=num_active_paths,
)
return recognizer
@lru_cache(maxsize=10)
def _get_streaming_paraformer_zh_yue_en_pre_trained_model(
repo_id: str,
decoding_method: str,
num_active_paths: int,
) -> sherpa_onnx.OnlineRecognizer:
assert repo_id in [
"csukuangfj/sherpa-onnx-streaming-paraformer-trilingual-zh-cantonese-en",
], repo_id
encoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="encoder.int8.onnx",
subfolder=".",
)
decoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="decoder.int8.onnx",
subfolder=".",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder=".")
recognizer = sherpa_onnx.OnlineRecognizer.from_paraformer(
tokens=tokens,
encoder=encoder_model,
decoder=decoder_model,
num_threads=2,
sample_rate=16000,
feature_dim=80,
decoding_method=decoding_method,
)
return recognizer
@lru_cache(maxsize=10)
def _get_paraformer_en_pre_trained_model(
repo_id: str,
decoding_method: str,
num_active_paths: int,
) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in [
"yujinqiu/sherpa-onnx-paraformer-en-2023-10-24",
], repo_id
nn_model = _get_nn_model_filename(
repo_id=repo_id,
filename="model.int8.onnx",
subfolder=".",
)
tokens = _get_token_filename(
repo_id=repo_id, filename="new_tokens.txt", subfolder="."
)
recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer(
paraformer=nn_model,
tokens=tokens,
num_threads=2,
sample_rate=sample_rate,
feature_dim=80,
decoding_method="greedy_search",
debug=False,
)
return recognizer
@lru_cache(maxsize=5)
def _get_chinese_dialect_models(
repo_id: str, decoding_method: str, num_active_paths: int
) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in [
"csukuangfj/sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04",
], repo_id
nn_model = _get_nn_model_filename(
repo_id=repo_id,
filename="model.int8.onnx",
subfolder=".",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder=".")
recognizer = sherpa_onnx.OfflineRecognizer.from_telespeech_ctc(
model=nn_model,
tokens=tokens,
num_threads=2,
)
return recognizer
@lru_cache(maxsize=10)
def _get_sense_voice_pre_trained_model(
repo_id: str,
decoding_method: str,
num_active_paths: int,
) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in [
"csukuangfj/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17",
], repo_id
nn_model = _get_nn_model_filename(
repo_id=repo_id,
filename="model.int8.onnx",
subfolder=".",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder=".")
recognizer = sherpa_onnx.OfflineRecognizer.from_sense_voice(
model=nn_model,
tokens=tokens,
num_threads=2,
sample_rate=sample_rate,
feature_dim=80,
decoding_method="greedy_search",
debug=True,
use_itn=True,
)
return recognizer
@lru_cache(maxsize=10)
def _get_paraformer_pre_trained_model(
repo_id: str,
decoding_method: str,
num_active_paths: int,
) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in [
"csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28",
"csukuangfj/sherpa-onnx-paraformer-zh-2024-03-09",
"csukuangfj/sherpa-onnx-paraformer-zh-small-2024-03-09",
"csukuangfj/sherpa-onnx-paraformer-trilingual-zh-cantonese-en",
"csukuangfj/sherpa-onnx-paraformer-en-2024-03-09",
], repo_id
nn_model = _get_nn_model_filename(
repo_id=repo_id,
filename="model.int8.onnx",
subfolder=".",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder=".")
recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer(
paraformer=nn_model,
tokens=tokens,
num_threads=2,
sample_rate=sample_rate,
feature_dim=80,
decoding_method="greedy_search",
debug=False,
)
return recognizer
def _get_aishell_pre_trained_model(
repo_id: str,
decoding_method: str,
num_active_paths: int,
) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in (
"zrjin/icefall-asr-aishell-zipformer-large-2023-10-24",
"zrjin/icefall-asr-aishell-zipformer-small-2023-10-24",
"zrjin/icefall-asr-aishell-zipformer-2023-10-24",
), repo_id
if repo_id == "zrjin/icefall-asr-aishell-zipformer-large-2023-10-24":
epoch = 56
avg = 23
elif repo_id == "zrjin/icefall-asr-aishell-zipformer-small-2023-10-24":
epoch = 55
avg = 21
elif repo_id == "zrjin/icefall-asr-aishell-zipformer-2023-10-24":
epoch = 55
avg = 17
encoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename=f"encoder-epoch-{epoch}-avg-{avg}.onnx",
subfolder="exp",
)
decoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename=f"decoder-epoch-{epoch}-avg-{avg}.onnx",
subfolder="exp",
)
joiner_model = _get_nn_model_filename(
repo_id=repo_id,
filename=f"joiner-epoch-{epoch}-avg-{avg}.onnx",
subfolder="exp",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_char")
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
tokens=tokens,
encoder=encoder_model,
decoder=decoder_model,
joiner=joiner_model,
num_threads=2,
sample_rate=16000,
feature_dim=80,
decoding_method=decoding_method,
max_active_paths=num_active_paths,
)
return recognizer
@lru_cache(maxsize=2)
def get_punct_model() -> sherpa_onnx.OfflinePunctuation:
model = _get_nn_model_filename(
repo_id="csukuangfj/sherpa-onnx-punct-ct-transformer-zh-en-vocab272727-2024-04-12",
filename="model.onnx",
subfolder=".",
)
config = sherpa_onnx.OfflinePunctuationConfig(
model=sherpa_onnx.OfflinePunctuationModelConfig(ct_transformer=model),
)
punct = sherpa_onnx.OfflinePunctuation(config)
return punct
def _get_multi_zh_hans_pre_trained_model(
repo_id: str,
decoding_method: str,
num_active_paths: int,
) -> sherpa_onnx.OfflineRecognizer:
assert repo_id in ("zrjin/sherpa-onnx-zipformer-multi-zh-hans-2023-9-2",), repo_id
encoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="encoder-epoch-20-avg-1.onnx",
subfolder=".",
)
decoder_model = _get_nn_model_filename(
repo_id=repo_id,
filename="decoder-epoch-20-avg-1.onnx",
subfolder=".",
)
joiner_model = _get_nn_model_filename(
repo_id=repo_id,
filename="joiner-epoch-20-avg-1.onnx",
subfolder=".",
)
tokens = _get_token_filename(repo_id=repo_id, subfolder=".")
recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
tokens=tokens,
encoder=encoder_model,
decoder=decoder_model,
joiner=joiner_model,
num_threads=2,
sample_rate=16000,
feature_dim=80,
decoding_method=decoding_method,
max_active_paths=num_active_paths,
)
return recognizer
chinese_dialect_models = {
"csukuangfj/sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04": _get_chinese_dialect_models,
}
chinese_models = {
"csukuangfj/sherpa-onnx-paraformer-zh-2024-03-09": _get_paraformer_pre_trained_model,
"luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2": _get_wenetspeech_pre_trained_model, # noqa
"csukuangfj/sherpa-onnx-paraformer-zh-small-2024-03-09": _get_paraformer_pre_trained_model,
"zrjin/sherpa-onnx-zipformer-multi-zh-hans-2023-9-2": _get_multi_zh_hans_pre_trained_model, # noqa
"zrjin/icefall-asr-aishell-zipformer-large-2023-10-24": _get_aishell_pre_trained_model, # noqa
"zrjin/icefall-asr-aishell-zipformer-small-2023-10-24": _get_aishell_pre_trained_model, # noqa
"zrjin/icefall-asr-aishell-zipformer-2023-10-24": _get_aishell_pre_trained_model, # noqa
"desh2608/icefall-asr-alimeeting-pruned-transducer-stateless7": _get_alimeeting_pre_trained_model,
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-A-2022-07-12": _get_aishell2_pretrained_model, # noqa
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12": _get_aishell2_pretrained_model, # noqa
"luomingshuang/icefall_asr_aidatatang-200zh_pruned_transducer_stateless2": _get_aidatatang_200zh_pretrained_mode, # noqa
"luomingshuang/icefall_asr_alimeeting_pruned_transducer_stateless2": _get_alimeeting_pre_trained_model, # noqa
"csukuangfj/wenet-chinese-model": _get_wenet_model,
# "csukuangfj/icefall-asr-wenetspeech-lstm-transducer-stateless-2022-10-14": _get_lstm_transducer_model,
}
english_models = {
"whisper-tiny.en": _get_whisper_model,
"moonshine-tiny": _get_moonshine_model,
"moonshine-base": _get_moonshine_model,
"whisper-base.en": _get_whisper_model,
"whisper-small.en": _get_whisper_model,
"csukuangfj/sherpa-onnx-nemo-parakeet_tdt_ctc_110m-en-36000": _get_sherpa_onnx_nemo_ctc_models,
"csukuangfj/sherpa-onnx-nemo-parakeet_tdt_transducer_110m-en-36000": _get_sherpa_onnx_nemo_transducer_models,
# "whisper-medium.en": _get_whisper_model,
"csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-large": _get_sherpa_onnx_offline_zipformer_pre_trained_model,
"csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-medium": _get_sherpa_onnx_offline_zipformer_pre_trained_model,
"csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-small": _get_sherpa_onnx_offline_zipformer_pre_trained_model,
"csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-large-punct-case": _get_sherpa_onnx_offline_zipformer_pre_trained_model,
"csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-medium-punct-case": _get_sherpa_onnx_offline_zipformer_pre_trained_model,
"csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-small-punct-case": _get_sherpa_onnx_offline_zipformer_pre_trained_model,
"csukuangfj/sherpa-onnx-paraformer-en-2024-03-09": _get_paraformer_pre_trained_model,
"yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17": _get_gigaspeech_pre_trained_model_onnx, # noqa
"wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2": _get_gigaspeech_pre_trained_model, # noqa
"yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04": _get_english_model, # noqa
"yfyeung/icefall-asr-finetune-mux-pruned_transducer_stateless7-2023-05-19": _get_english_model, # noqa
"WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02": _get_english_model, # noqa
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless8-2022-11-14": _get_english_model, # noqa
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11": _get_english_model, # noqa
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13": _get_english_model, # noqa
"yujinqiu/sherpa-onnx-paraformer-en-2023-10-24": _get_paraformer_en_pre_trained_model,
"Zengwei/icefall-asr-librispeech-zipformer-large-2023-05-16": _get_english_model, # noqa
"Zengwei/icefall-asr-librispeech-zipformer-2023-05-15": _get_english_model, # noqa
"Zengwei/icefall-asr-librispeech-zipformer-small-2023-05-16": _get_english_model, # noqa
"videodanchik/icefall-asr-tedlium3-conformer-ctc2": _get_english_model,
"pkufool/icefall_asr_librispeech_conformer_ctc": _get_english_model,
"WayneWiser/icefall-asr-librispeech-conformer-ctc2-jit-bpe-500-2022-07-21": _get_english_model,
"csukuangfj/wenet-english-model": _get_wenet_model,
}
chinese_english_mixed_models = {
"csukuangfj/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20": _get_streaming_zipformer_pre_trained_model,
"zrjin/icefall-asr-zipformer-multi-zh-en-2023-11-22": _get_chinese_english_mixed_model_onnx,
"csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28": _get_paraformer_pre_trained_model,
"ptrnull/icefall-asr-conv-emformer-transducer-stateless2-zh": _get_chinese_english_mixed_model,
"luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5": _get_chinese_english_mixed_model, # noqa
}
tibetan_models = {
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless7-2022-12-02": _get_tibetan_pre_trained_model, # noqa
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29": _get_tibetan_pre_trained_model, # noqa
}
arabic_models = {
"AmirHussein/icefall-asr-mgb2-conformer_ctc-2022-27-06": _get_arabic_pre_trained_model, # noqa
}
german_models = {
"csukuangfj/wav2vec2.0-torchaudio": _get_german_pre_trained_model,
}
french_models = {
"shaojieli/sherpa-onnx-streaming-zipformer-fr-2023-04-14": _get_french_pre_trained_model,
}
japanese_models = {
"reazon-research/reazonspeech-k2-v2": _get_offline_pre_trained_model,
# "TeoWenShen/icefall-asr-csj-pruned-transducer-stateless7-streaming-230208-fluent": _get_japanese_pre_trained_model,
# "TeoWenShen/icefall-asr-csj-pruned-transducer-stateless7-streaming-230208-disfluent": _get_japanese_pre_trained_model,
}
russian_models = {
"csukuangfj/sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24": _get_russian_pre_trained_model,
"csukuangfj/sherpa-onnx-nemo-ctc-giga-am-russian-2024-10-24": _get_russian_pre_trained_model_ctc,
"alphacep/vosk-model-ru": _get_russian_pre_trained_model,
"alphacep/vosk-model-small-ru": _get_russian_pre_trained_model,
}
chinese_cantonese_english_models = {
"csukuangfj/sherpa-onnx-paraformer-trilingual-zh-cantonese-en": _get_paraformer_pre_trained_model,
"csukuangfj/sherpa-onnx-streaming-paraformer-trilingual-zh-cantonese-en": _get_streaming_paraformer_zh_yue_en_pre_trained_model,
}
chinese_cantonese_english_japanese_korean_models = {
"csukuangfj/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17": _get_sense_voice_pre_trained_model,
}
cantonese_models = {
"zrjin/icefall-asr-mdcc-zipformer-2024-03-11": _get_zrjin_cantonese_pre_trained_model,
}
korean_models = {
"k2-fsa/sherpa-onnx-zipformer-korean-2024-06-24": _get_offline_pre_trained_model,
"k2-fsa/sherpa-onnx-streaming-zipformer-korean-2024-06-16": _get_streaming_zipformer_pre_trained_model,
}
thai_models = {
"yfyeung/icefall-asr-gigaspeech2-th-zipformer-2024-06-20": _get_yifan_thai_pretrained_model,
}
all_models = {
**chinese_models,
**english_models,
**chinese_english_mixed_models,
**chinese_cantonese_english_models,
**chinese_cantonese_english_japanese_korean_models,
**cantonese_models,
**japanese_models,
**tibetan_models,
**arabic_models,
**german_models,
**french_models,
**russian_models,
**korean_models,
**thai_models,
}
language_to_models = {
"超多种中文方言": list(chinese_dialect_models.keys()),
"Chinese": list(chinese_models.keys()),
"English": list(english_models.keys()),
"Chinese+English": list(chinese_english_mixed_models.keys()),
"Chinese+English+Cantonese": list(chinese_cantonese_english_models.keys()),
"Chinese+English+Cantonese+Japanese+Korean": list(
chinese_cantonese_english_japanese_korean_models.keys()
),
"Cantonese": list(cantonese_models.keys()),
"Japanese": list(japanese_models.keys()),
"Tibetan": list(tibetan_models.keys()),
"Arabic": list(arabic_models.keys()),
"German": list(german_models.keys()),
"French": list(french_models.keys()),
"Russian": list(russian_models.keys()),
"Korean": list(korean_models.keys()),
"Thai": list(thai_models.keys()),
}