audio-tagging / model.py
csukuangfj's picture
first commit
2e7292b
# Copyright 2022-2024 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import wave
from functools import lru_cache
from typing import Tuple, List
import numpy as np
import sherpa_onnx
from huggingface_hub import hf_hub_download
sample_rate = 16000
def read_wave(wave_filename: str) -> Tuple[np.ndarray, int]:
"""
Args:
wave_filename:
Path to a wave file. It should be single channel and each sample should
be 16-bit. Its sample rate does not need to be 16kHz.
Returns:
Return a tuple containing:
- A 1-D array of dtype np.float32 containing the samples, which are
normalized to the range [-1, 1].
- sample rate of the wave file
"""
with wave.open(wave_filename) as f:
assert f.getnchannels() == 1, f.getnchannels()
assert f.getsampwidth() == 2, f.getsampwidth() # it is in bytes
num_samples = f.getnframes()
samples = f.readframes(num_samples)
samples_int16 = np.frombuffer(samples, dtype=np.int16)
samples_float32 = samples_int16.astype(np.float32)
samples_float32 = samples_float32 / 32768
return samples_float32, f.getframerate()
def decode(
tagger: sherpa_onnx.AudioTagging,
filename: str,
top_k: int = -1,
) -> List[sherpa_onnx.AudioEvent]:
s = tagger.create_stream()
samples, sample_rate = read_wave(filename)
s.accept_waveform(sample_rate, samples)
events = tagger.compute(s, top_k)
return events
def _get_nn_model_filename(
repo_id: str,
filename: str,
subfolder: str = ".",
) -> str:
nn_model_filename = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder,
)
return nn_model_filename
@lru_cache(maxsize=8)
def get_pretrained_model(repo_id: str) -> sherpa_onnx.AudioTagging:
assert repo_id in (
"k2-fsa/sherpa-onnx-zipformer-small-audio-tagging-2024-04-15",
"k2-fsa/sherpa-onnx-zipformer-audio-tagging-2024-04-09",
), repo_id
model = _get_nn_model_filename(
repo_id=repo_id,
filename="model.int8.onnx",
)
labels = _get_nn_model_filename(
repo_id=repo_id,
filename="class_labels_indices.csv",
)
config = sherpa_onnx.AudioTaggingConfig(
model=sherpa_onnx.AudioTaggingModelConfig(
zipformer=sherpa_onnx.OfflineZipformerAudioTaggingModelConfig(
model=model,
),
num_threads=1,
debug=True,
provider="cpu",
),
labels=labels,
top_k=5,
)
return sherpa_onnx.AudioTagging(config)
models = {
"k2-fsa/sherpa-onnx-zipformer-audio-tagging-2024-04-09": get_pretrained_model,
"k2-fsa/sherpa-onnx-zipformer-small-audio-tagging-2024-04-15": get_pretrained_model,
}