Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from openai import OpenAI | |
import anthropic | |
import os | |
hf_client = InferenceClient() | |
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) | |
anthropic_client = anthropic.Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY")) | |
MODEL_OPTIONS = { | |
"Mixtral-8x7B-Instruct-v0.1": "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"Qwen2-72B-Instruct": "Qwen/Qwen2-72B-Instruct", | |
"GPT-3.5-turbo": "gpt-3.5-turbo", | |
"GPT-4": "gpt-4", | |
"claude-3-5-sonnet": "claude-3-5-sonnet-20240620", | |
} | |
def generate_text(model_choice, messages): | |
full_response = "" | |
if "Mixtral" in model_choice or "Qwen" in model_choice: | |
prompt = "\n".join([f"Human: {m[0]}\nAI: {m[1] if m[1] else ''}" for m in messages]) | |
prompt += f"\nHuman: {messages[-1][0]}\nAI:" | |
stream = hf_client.text_generation( | |
model=MODEL_OPTIONS[model_choice], | |
prompt=prompt, | |
max_new_tokens=1000, | |
temperature=0.7, | |
do_sample=True, | |
repetition_penalty=1.1, | |
stream=True | |
) | |
for response in stream: | |
full_response += response # This line is correct now | |
yield full_response | |
elif "GPT" in model_choice: | |
openai_messages = [{"role": "system", "content": "You are a helpful assistant."}] | |
for m in messages: | |
openai_messages.append({"role": "user", "content": m[0]}) | |
if m[1]: | |
openai_messages.append({"role": "assistant", "content": m[1]}) | |
stream = openai_client.chat.completions.create( | |
model=MODEL_OPTIONS[model_choice], | |
messages=openai_messages, | |
max_tokens=1000, | |
temperature=0.7, | |
stream=True | |
) | |
for chunk in stream: | |
if chunk.choices[0].delta.content: | |
full_response += chunk.choices[0].delta.content | |
yield full_response | |
elif "claude" in model_choice: | |
claude_messages = [] | |
for msg in messages: | |
if msg[0]: # User message | |
claude_messages.append({"role": "user", "content": msg[0]}) | |
if msg[1]: # AI response | |
claude_messages.append({"role": "assistant", "content": msg[1]}) | |
if not claude_messages: | |
claude_messages = [{"role": "user", "content": "Hello"}] | |
with anthropic_client.messages.stream( | |
model=MODEL_OPTIONS[model_choice], | |
max_tokens=1024, | |
messages=claude_messages | |
) as stream: | |
for text in stream.text_stream: | |
full_response += text | |
yield full_response | |
else: | |
yield "Unsupported model" | |
def user(user_message, history): | |
history = history or [] | |
return "", history + [[user_message, None]] | |
def bot(history, model_choice): | |
if not history: | |
return [] | |
bot_message = generate_text(model_choice, history) | |
history[-1][1] = "" | |
for chunk in bot_message: | |
history[-1][1] = chunk | |
yield history | |
with gr.Blocks() as iface: | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox() | |
clear = gr.Button("Clear") | |
model_dropdown = gr.Dropdown( | |
choices=list(MODEL_OPTIONS.keys()), | |
value="Mixtral-8x7B-Instruct-v0.1", | |
label="Select Model" | |
) | |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
bot, [chatbot, model_dropdown], chatbot | |
) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
if __name__ == "__main__": | |
iface.launch(debug=True) |