Spaces:
Runtime error
Runtime error
Commit
·
4902206
1
Parent(s):
b71d527
fine tuned model added
Browse files- Final_Project_Fine_Tuning.ipynb +685 -0
- app.py +21 -8
- init.bash +1 -1
- requirements.txt +2 -1
Final_Project_Fine_Tuning.ipynb
ADDED
@@ -0,0 +1,685 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {
|
7 |
+
"colab": {
|
8 |
+
"base_uri": "https://localhost:8080/"
|
9 |
+
},
|
10 |
+
"id": "K6KNj8R5pFOi",
|
11 |
+
"outputId": "73e388e8-294f-438d-ddc2-06ae7132580a"
|
12 |
+
},
|
13 |
+
"outputs": [],
|
14 |
+
"source": [
|
15 |
+
"!kaggle competitions download -c jigsaw-toxic-comment-classification-challenge\n",
|
16 |
+
"!unzip jigsaw-toxic-comment-classification-challenge"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": null,
|
22 |
+
"metadata": {
|
23 |
+
"colab": {
|
24 |
+
"base_uri": "https://localhost:8080/"
|
25 |
+
},
|
26 |
+
"id": "-a6Sx13TqW2h",
|
27 |
+
"outputId": "eb6bb305-7b66-4f59-e1e3-24858c1309c4"
|
28 |
+
},
|
29 |
+
"outputs": [],
|
30 |
+
"source": [
|
31 |
+
"!unzip test.csv.zip \n",
|
32 |
+
"!unzip test_labels.csv.zip \n",
|
33 |
+
"!unzip train.csv.zip"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": 1,
|
39 |
+
"metadata": {
|
40 |
+
"id": "Jt-aOqhVqavv"
|
41 |
+
},
|
42 |
+
"outputs": [],
|
43 |
+
"source": [
|
44 |
+
"import warnings\n",
|
45 |
+
"import pandas as pd\n",
|
46 |
+
"import torch\n",
|
47 |
+
"import numpy as np\n",
|
48 |
+
"from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler\n",
|
49 |
+
"from sklearn.model_selection import train_test_split\n",
|
50 |
+
"from transformers import Trainer, TrainingArguments\n",
|
51 |
+
"from transformers import AutoTokenizer, AutoModelForSequenceClassification"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"execution_count": 2,
|
57 |
+
"metadata": {},
|
58 |
+
"outputs": [],
|
59 |
+
"source": [
|
60 |
+
"warnings.filterwarnings('ignore')"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "code",
|
65 |
+
"execution_count": 3,
|
66 |
+
"metadata": {},
|
67 |
+
"outputs": [
|
68 |
+
{
|
69 |
+
"name": "stdout",
|
70 |
+
"output_type": "stream",
|
71 |
+
"text": [
|
72 |
+
"mps:0\n"
|
73 |
+
]
|
74 |
+
}
|
75 |
+
],
|
76 |
+
"source": [
|
77 |
+
"# Use GPU\n",
|
78 |
+
"#device = \"cuda:0\" if torch.cuda.is_available() else \"cpu\"\n",
|
79 |
+
"device = \"mps:0\" if torch.backends.mps.is_available() else \"cpu\"\n",
|
80 |
+
"print(device)"
|
81 |
+
]
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"cell_type": "code",
|
85 |
+
"execution_count": 4,
|
86 |
+
"metadata": {
|
87 |
+
"id": "zMDF7x0H4VFW"
|
88 |
+
},
|
89 |
+
"outputs": [
|
90 |
+
{
|
91 |
+
"data": {
|
92 |
+
"text/html": [
|
93 |
+
"<div>\n",
|
94 |
+
"<style scoped>\n",
|
95 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
96 |
+
" vertical-align: middle;\n",
|
97 |
+
" }\n",
|
98 |
+
"\n",
|
99 |
+
" .dataframe tbody tr th {\n",
|
100 |
+
" vertical-align: top;\n",
|
101 |
+
" }\n",
|
102 |
+
"\n",
|
103 |
+
" .dataframe thead th {\n",
|
104 |
+
" text-align: right;\n",
|
105 |
+
" }\n",
|
106 |
+
"</style>\n",
|
107 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
108 |
+
" <thead>\n",
|
109 |
+
" <tr style=\"text-align: right;\">\n",
|
110 |
+
" <th></th>\n",
|
111 |
+
" <th>id</th>\n",
|
112 |
+
" <th>comment_text</th>\n",
|
113 |
+
" <th>toxic</th>\n",
|
114 |
+
" <th>severe_toxic</th>\n",
|
115 |
+
" <th>obscene</th>\n",
|
116 |
+
" <th>threat</th>\n",
|
117 |
+
" <th>insult</th>\n",
|
118 |
+
" <th>identity_hate</th>\n",
|
119 |
+
" </tr>\n",
|
120 |
+
" </thead>\n",
|
121 |
+
" <tbody>\n",
|
122 |
+
" <tr>\n",
|
123 |
+
" <th>0</th>\n",
|
124 |
+
" <td>0000997932d777bf</td>\n",
|
125 |
+
" <td>Explanation\\nWhy the edits made under my usern...</td>\n",
|
126 |
+
" <td>0</td>\n",
|
127 |
+
" <td>0</td>\n",
|
128 |
+
" <td>0</td>\n",
|
129 |
+
" <td>0</td>\n",
|
130 |
+
" <td>0</td>\n",
|
131 |
+
" <td>0</td>\n",
|
132 |
+
" </tr>\n",
|
133 |
+
" </tbody>\n",
|
134 |
+
"</table>\n",
|
135 |
+
"</div>"
|
136 |
+
],
|
137 |
+
"text/plain": [
|
138 |
+
" id comment_text toxic \\\n",
|
139 |
+
"0 0000997932d777bf Explanation\\nWhy the edits made under my usern... 0 \n",
|
140 |
+
"\n",
|
141 |
+
" severe_toxic obscene threat insult identity_hate \n",
|
142 |
+
"0 0 0 0 0 0 "
|
143 |
+
]
|
144 |
+
},
|
145 |
+
"execution_count": 4,
|
146 |
+
"metadata": {},
|
147 |
+
"output_type": "execute_result"
|
148 |
+
}
|
149 |
+
],
|
150 |
+
"source": [
|
151 |
+
"# Load training text and label dataset\n",
|
152 |
+
"# Preprocess data\n",
|
153 |
+
"\n",
|
154 |
+
"#test_texts = pd.read_csv(\"test.csv\").values.tolist()\n",
|
155 |
+
"#test_labels = pd.read_csv('test_labels.csv').values.tolist()\n",
|
156 |
+
"\n",
|
157 |
+
"train = pd.read_csv('train.csv')\n",
|
158 |
+
"train.head(1)"
|
159 |
+
]
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"cell_type": "code",
|
163 |
+
"execution_count": 5,
|
164 |
+
"metadata": {},
|
165 |
+
"outputs": [
|
166 |
+
{
|
167 |
+
"name": "stdout",
|
168 |
+
"output_type": "stream",
|
169 |
+
"text": [
|
170 |
+
"159571 (159571, 8)\n",
|
171 |
+
"id False\n",
|
172 |
+
"comment_text False\n",
|
173 |
+
"toxic False\n",
|
174 |
+
"severe_toxic False\n",
|
175 |
+
"obscene False\n",
|
176 |
+
"threat False\n",
|
177 |
+
"insult False\n",
|
178 |
+
"identity_hate False\n",
|
179 |
+
"dtype: bool\n",
|
180 |
+
"False\n"
|
181 |
+
]
|
182 |
+
}
|
183 |
+
],
|
184 |
+
"source": [
|
185 |
+
"# Any duplicates?\n",
|
186 |
+
"print(len(train['comment_text'].unique()), train.shape)\n",
|
187 |
+
"\n",
|
188 |
+
"# Any missing values?\n",
|
189 |
+
"print(train.isnull().any())\n",
|
190 |
+
"print(train.isnull().values.any())"
|
191 |
+
]
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"cell_type": "code",
|
195 |
+
"execution_count": 6,
|
196 |
+
"metadata": {},
|
197 |
+
"outputs": [
|
198 |
+
{
|
199 |
+
"data": {
|
200 |
+
"text/html": [
|
201 |
+
"<div>\n",
|
202 |
+
"<style scoped>\n",
|
203 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
204 |
+
" vertical-align: middle;\n",
|
205 |
+
" }\n",
|
206 |
+
"\n",
|
207 |
+
" .dataframe tbody tr th {\n",
|
208 |
+
" vertical-align: top;\n",
|
209 |
+
" }\n",
|
210 |
+
"\n",
|
211 |
+
" .dataframe thead th {\n",
|
212 |
+
" text-align: right;\n",
|
213 |
+
" }\n",
|
214 |
+
"</style>\n",
|
215 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
216 |
+
" <thead>\n",
|
217 |
+
" <tr style=\"text-align: right;\">\n",
|
218 |
+
" <th></th>\n",
|
219 |
+
" <th>id</th>\n",
|
220 |
+
" <th>comment_text</th>\n",
|
221 |
+
" <th>toxic</th>\n",
|
222 |
+
" <th>severe_toxic</th>\n",
|
223 |
+
" <th>obscene</th>\n",
|
224 |
+
" <th>threat</th>\n",
|
225 |
+
" <th>insult</th>\n",
|
226 |
+
" <th>identity_hate</th>\n",
|
227 |
+
" <th>grouped_labels</th>\n",
|
228 |
+
" </tr>\n",
|
229 |
+
" </thead>\n",
|
230 |
+
" <tbody>\n",
|
231 |
+
" <tr>\n",
|
232 |
+
" <th>0</th>\n",
|
233 |
+
" <td>0000997932d777bf</td>\n",
|
234 |
+
" <td>Explanation\\nWhy the edits made under my usern...</td>\n",
|
235 |
+
" <td>0</td>\n",
|
236 |
+
" <td>0</td>\n",
|
237 |
+
" <td>0</td>\n",
|
238 |
+
" <td>0</td>\n",
|
239 |
+
" <td>0</td>\n",
|
240 |
+
" <td>0</td>\n",
|
241 |
+
" <td>[0, 0, 0, 0, 0, 0]</td>\n",
|
242 |
+
" </tr>\n",
|
243 |
+
" </tbody>\n",
|
244 |
+
"</table>\n",
|
245 |
+
"</div>"
|
246 |
+
],
|
247 |
+
"text/plain": [
|
248 |
+
" id comment_text toxic \\\n",
|
249 |
+
"0 0000997932d777bf Explanation\\nWhy the edits made under my usern... 0 \n",
|
250 |
+
"\n",
|
251 |
+
" severe_toxic obscene threat insult identity_hate grouped_labels \n",
|
252 |
+
"0 0 0 0 0 0 [0, 0, 0, 0, 0, 0] "
|
253 |
+
]
|
254 |
+
},
|
255 |
+
"execution_count": 6,
|
256 |
+
"metadata": {},
|
257 |
+
"output_type": "execute_result"
|
258 |
+
}
|
259 |
+
],
|
260 |
+
"source": [
|
261 |
+
"# Group labels to get right format for training\n",
|
262 |
+
"labels = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']\n",
|
263 |
+
"train['grouped_labels'] = train[labels].values.tolist()\n",
|
264 |
+
"train.head(1)"
|
265 |
+
]
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"cell_type": "code",
|
269 |
+
"execution_count": 7,
|
270 |
+
"metadata": {},
|
271 |
+
"outputs": [],
|
272 |
+
"source": [
|
273 |
+
"# Convert to list from dataframe\n",
|
274 |
+
"train_texts = train['comment_text'].values.tolist()\n",
|
275 |
+
"train_labels = train['grouped_labels'].values.tolist()"
|
276 |
+
]
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"cell_type": "code",
|
280 |
+
"execution_count": 8,
|
281 |
+
"metadata": {
|
282 |
+
"id": "vkxJ6NkFlc46",
|
283 |
+
"tags": []
|
284 |
+
},
|
285 |
+
"outputs": [],
|
286 |
+
"source": [
|
287 |
+
"# Use distilbert, a faster model of BERT which keeps 95% of the performance\n",
|
288 |
+
"model_name = \"bert-base-uncased\"\n",
|
289 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name)"
|
290 |
+
]
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"cell_type": "code",
|
294 |
+
"execution_count": 9,
|
295 |
+
"metadata": {},
|
296 |
+
"outputs": [
|
297 |
+
{
|
298 |
+
"name": "stdout",
|
299 |
+
"output_type": "stream",
|
300 |
+
"text": [
|
301 |
+
"[1, 0, 1, 1, 0, 0] 11\n",
|
302 |
+
"[1, 1, 0, 1, 0, 0] 11\n",
|
303 |
+
"[1, 0, 0, 1, 0, 1] 7\n",
|
304 |
+
"[1, 1, 0, 0, 1, 1] 7\n",
|
305 |
+
"[1, 1, 1, 0, 0, 1] 6\n",
|
306 |
+
"[1, 1, 1, 1, 0, 0] 4\n",
|
307 |
+
"[0, 0, 0, 1, 1, 0] 3\n",
|
308 |
+
"[1, 0, 0, 1, 1, 1] 3\n",
|
309 |
+
"[1, 1, 0, 0, 0, 1] 3\n",
|
310 |
+
"[0, 0, 1, 0, 0, 1] 3\n",
|
311 |
+
"[0, 0, 1, 1, 0, 0] 2\n",
|
312 |
+
"[0, 0, 1, 1, 1, 0] 2\n",
|
313 |
+
"[1, 1, 0, 1, 1, 0] 1\n",
|
314 |
+
"[1, 1, 0, 1, 0, 1] 1\n",
|
315 |
+
"Name: grouped_labels, dtype: int64\n",
|
316 |
+
"df label indices with only one instance: [159029, 158498, 157010, 154553, 149180, 144159, 139501, 138026, 134459, 133505, 127410, 120395, 115766, 113304, 110056, 107881, 107096, 101089, 98699, 86746, 76454, 74607, 68264, 66350, 63687, 61934, 57594, 53408, 45101, 41461, 36141, 31191, 30566, 29445, 23374, 17187, 15977, 9487, 8979, 6316, 6063, 2374]\n"
|
317 |
+
]
|
318 |
+
}
|
319 |
+
],
|
320 |
+
"source": [
|
321 |
+
"# Also do preprocessing to see if there are any unique rows\n",
|
322 |
+
"# with that specfic combination of labels\n",
|
323 |
+
"# If that is the case, we want to include that row in the training data\n",
|
324 |
+
"\n",
|
325 |
+
"# Find unique label combinations\n",
|
326 |
+
"label_counts = train['grouped_labels'].astype(str).value_counts()\n",
|
327 |
+
"print(label_counts[-14:])\n",
|
328 |
+
"\n",
|
329 |
+
"# Take low frequency labels\n",
|
330 |
+
"low_freq = label_counts[label_counts<10].keys()\n",
|
331 |
+
"low_freq_inds = sorted(list(train[train['grouped_labels'].astype(str).isin(low_freq)].index), reverse=True)\n",
|
332 |
+
"print('df label indices with only one instance: ', low_freq_inds)"
|
333 |
+
]
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"cell_type": "code",
|
337 |
+
"execution_count": 10,
|
338 |
+
"metadata": {},
|
339 |
+
"outputs": [],
|
340 |
+
"source": [
|
341 |
+
"low_freq_train_texts = [train_texts.pop(i) for i in low_freq_inds]\n",
|
342 |
+
"low_freq_train_labels = [train_labels.pop(i) for i in low_freq_inds]"
|
343 |
+
]
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"cell_type": "code",
|
347 |
+
"execution_count": 11,
|
348 |
+
"metadata": {},
|
349 |
+
"outputs": [],
|
350 |
+
"source": [
|
351 |
+
"# Add low freq values to training data\n",
|
352 |
+
"train_texts.extend(low_freq_train_texts)\n",
|
353 |
+
"train_labels.extend(low_freq_train_labels)"
|
354 |
+
]
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"cell_type": "code",
|
358 |
+
"execution_count": 12,
|
359 |
+
"metadata": {},
|
360 |
+
"outputs": [],
|
361 |
+
"source": [
|
362 |
+
"# Split datasets for training\n",
|
363 |
+
"train_texts, val_texts, train_labels, val_labels = train_test_split(train_texts, train_labels, test_size=.1)"
|
364 |
+
]
|
365 |
+
},
|
366 |
+
{
|
367 |
+
"cell_type": "code",
|
368 |
+
"execution_count": 13,
|
369 |
+
"metadata": {},
|
370 |
+
"outputs": [],
|
371 |
+
"source": [
|
372 |
+
"# Shorten token to increase training speed, average is below this\n",
|
373 |
+
"max_length = 100\n",
|
374 |
+
"train_encodings = tokenizer(train_texts, truncation=True, padding=True, return_tensors=\"pt\", max_length=max_length).to(device)\n",
|
375 |
+
"val_encodings = tokenizer(val_texts, truncation=True, padding=True, return_tensors=\"pt\", max_length=max_length).to(device)"
|
376 |
+
]
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"cell_type": "code",
|
380 |
+
"execution_count": 14,
|
381 |
+
"metadata": {},
|
382 |
+
"outputs": [],
|
383 |
+
"source": [
|
384 |
+
"class ToxicDataset(Dataset):\n",
|
385 |
+
" def __init__(self, encodings, labels):\n",
|
386 |
+
" self.encodings = encodings\n",
|
387 |
+
" self.labels = [[float(y) for y in x] for x in labels]\n",
|
388 |
+
"\n",
|
389 |
+
" def __getitem__(self, idx):\n",
|
390 |
+
" item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}\n",
|
391 |
+
" item['labels'] = torch.tensor(self.labels[idx])\n",
|
392 |
+
" return item\n",
|
393 |
+
"\n",
|
394 |
+
" def __len__(self):\n",
|
395 |
+
" return len(self.labels)"
|
396 |
+
]
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"cell_type": "code",
|
400 |
+
"execution_count": 15,
|
401 |
+
"metadata": {},
|
402 |
+
"outputs": [],
|
403 |
+
"source": [
|
404 |
+
"train_dataset = ToxicDataset(train_encodings, train_labels)\n",
|
405 |
+
"val_dataset = ToxicDataset(val_encodings, val_labels)"
|
406 |
+
]
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"cell_type": "code",
|
410 |
+
"execution_count": 16,
|
411 |
+
"metadata": {
|
412 |
+
"tags": []
|
413 |
+
},
|
414 |
+
"outputs": [
|
415 |
+
{
|
416 |
+
"name": "stderr",
|
417 |
+
"output_type": "stream",
|
418 |
+
"text": [
|
419 |
+
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.weight', 'cls.seq_relationship.bias', 'cls.predictions.decoder.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.bias']\n",
|
420 |
+
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
421 |
+
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
422 |
+
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
|
423 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
424 |
+
]
|
425 |
+
}
|
426 |
+
],
|
427 |
+
"source": [
|
428 |
+
"model = AutoModelForSequenceClassification.from_pretrained(model_name,\n",
|
429 |
+
" num_labels=6,\n",
|
430 |
+
" ).to(device)"
|
431 |
+
]
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"cell_type": "code",
|
435 |
+
"execution_count": 56,
|
436 |
+
"metadata": {
|
437 |
+
"collapsed": true,
|
438 |
+
"id": "CI2B0V5D27gA",
|
439 |
+
"jupyter": {
|
440 |
+
"outputs_hidden": true
|
441 |
+
},
|
442 |
+
"tags": []
|
443 |
+
},
|
444 |
+
"outputs": [
|
445 |
+
{
|
446 |
+
"name": "stderr",
|
447 |
+
"output_type": "stream",
|
448 |
+
"text": [
|
449 |
+
"The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).\n",
|
450 |
+
"PyTorch: setting up devices\n",
|
451 |
+
"***** Running training *****\n",
|
452 |
+
" Num examples = 127656\n",
|
453 |
+
" Num Epochs = 1\n",
|
454 |
+
" Instantaneous batch size per device = 16\n",
|
455 |
+
" Total train batch size (w. parallel, distributed & accumulation) = 16\n",
|
456 |
+
" Gradient Accumulation steps = 1\n",
|
457 |
+
" Total optimization steps = 7979\n",
|
458 |
+
" Number of trainable parameters = 109486854\n"
|
459 |
+
]
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"data": {
|
463 |
+
"text/html": [
|
464 |
+
"\n",
|
465 |
+
" <div>\n",
|
466 |
+
" \n",
|
467 |
+
" <progress value='33' max='7979' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
468 |
+
" [ 33/7979 00:21 < 1:33:06, 1.42 it/s, Epoch 0.00/1]\n",
|
469 |
+
" </div>\n",
|
470 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
471 |
+
" <thead>\n",
|
472 |
+
" <tr style=\"text-align: left;\">\n",
|
473 |
+
" <th>Step</th>\n",
|
474 |
+
" <th>Training Loss</th>\n",
|
475 |
+
" </tr>\n",
|
476 |
+
" </thead>\n",
|
477 |
+
" <tbody>\n",
|
478 |
+
" <tr>\n",
|
479 |
+
" <td>10</td>\n",
|
480 |
+
" <td>0.605800</td>\n",
|
481 |
+
" </tr>\n",
|
482 |
+
" <tr>\n",
|
483 |
+
" <td>20</td>\n",
|
484 |
+
" <td>0.590100</td>\n",
|
485 |
+
" </tr>\n",
|
486 |
+
" <tr>\n",
|
487 |
+
" <td>30</td>\n",
|
488 |
+
" <td>0.550200</td>\n",
|
489 |
+
" </tr>\n",
|
490 |
+
" </tbody>\n",
|
491 |
+
"</table><p>"
|
492 |
+
],
|
493 |
+
"text/plain": [
|
494 |
+
"<IPython.core.display.HTML object>"
|
495 |
+
]
|
496 |
+
},
|
497 |
+
"metadata": {},
|
498 |
+
"output_type": "display_data"
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"ename": "KeyboardInterrupt",
|
502 |
+
"evalue": "",
|
503 |
+
"output_type": "error",
|
504 |
+
"traceback": [
|
505 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
506 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
507 |
+
"Cell \u001b[0;32mIn[56], line 28\u001b[0m\n\u001b[1;32m 9\u001b[0m training_args \u001b[38;5;241m=\u001b[39m TrainingArgumentsWithMPSSupport(\n\u001b[1;32m 10\u001b[0m output_dir \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m./results\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m 11\u001b[0m num_train_epochs\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 18\u001b[0m logging_steps\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m10\u001b[39m,\n\u001b[1;32m 19\u001b[0m )\n\u001b[1;32m 21\u001b[0m trainer \u001b[38;5;241m=\u001b[39m Trainer(\n\u001b[1;32m 22\u001b[0m model\u001b[38;5;241m=\u001b[39mmodel,\n\u001b[1;32m 23\u001b[0m args\u001b[38;5;241m=\u001b[39mtraining_args,\n\u001b[1;32m 24\u001b[0m train_dataset\u001b[38;5;241m=\u001b[39mtrain_dataset,\n\u001b[1;32m 25\u001b[0m eval_dataset\u001b[38;5;241m=\u001b[39mval_dataset,\n\u001b[1;32m 26\u001b[0m )\n\u001b[0;32m---> 28\u001b[0m \u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
|
508 |
+
"File \u001b[0;32m~/anaconda3/lib/python3.10/site-packages/transformers/trainer.py:1501\u001b[0m, in \u001b[0;36mTrainer.train\u001b[0;34m(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)\u001b[0m\n\u001b[1;32m 1496\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel_wrapped \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel\n\u001b[1;32m 1498\u001b[0m inner_training_loop \u001b[38;5;241m=\u001b[39m find_executable_batch_size(\n\u001b[1;32m 1499\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_inner_training_loop, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_train_batch_size, args\u001b[38;5;241m.\u001b[39mauto_find_batch_size\n\u001b[1;32m 1500\u001b[0m )\n\u001b[0;32m-> 1501\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43minner_training_loop\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1502\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1503\u001b[0m \u001b[43m \u001b[49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1504\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrial\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrial\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1505\u001b[0m \u001b[43m \u001b[49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1506\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
|
509 |
+
"File \u001b[0;32m~/anaconda3/lib/python3.10/site-packages/transformers/trainer.py:1749\u001b[0m, in \u001b[0;36mTrainer._inner_training_loop\u001b[0;34m(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)\u001b[0m\n\u001b[1;32m 1747\u001b[0m tr_loss_step \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtraining_step(model, inputs)\n\u001b[1;32m 1748\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1749\u001b[0m tr_loss_step \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtraining_step\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1751\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (\n\u001b[1;32m 1752\u001b[0m args\u001b[38;5;241m.\u001b[39mlogging_nan_inf_filter\n\u001b[1;32m 1753\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m is_torch_tpu_available()\n\u001b[1;32m 1754\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m (torch\u001b[38;5;241m.\u001b[39misnan(tr_loss_step) \u001b[38;5;129;01mor\u001b[39;00m torch\u001b[38;5;241m.\u001b[39misinf(tr_loss_step))\n\u001b[1;32m 1755\u001b[0m ):\n\u001b[1;32m 1756\u001b[0m \u001b[38;5;66;03m# if loss is nan or inf simply add the average of previous logged losses\u001b[39;00m\n\u001b[1;32m 1757\u001b[0m tr_loss \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m tr_loss \u001b[38;5;241m/\u001b[39m (\u001b[38;5;241m1\u001b[39m \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mglobal_step \u001b[38;5;241m-\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_globalstep_last_logged)\n",
|
510 |
+
"File \u001b[0;32m~/anaconda3/lib/python3.10/site-packages/transformers/trainer.py:2526\u001b[0m, in \u001b[0;36mTrainer.training_step\u001b[0;34m(self, model, inputs)\u001b[0m\n\u001b[1;32m 2524\u001b[0m loss \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdeepspeed\u001b[38;5;241m.\u001b[39mbackward(loss)\n\u001b[1;32m 2525\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 2526\u001b[0m \u001b[43mloss\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbackward\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2528\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m loss\u001b[38;5;241m.\u001b[39mdetach()\n",
|
511 |
+
"File \u001b[0;32m~/anaconda3/lib/python3.10/site-packages/torch/_tensor.py:488\u001b[0m, in \u001b[0;36mTensor.backward\u001b[0;34m(self, gradient, retain_graph, create_graph, inputs)\u001b[0m\n\u001b[1;32m 478\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m has_torch_function_unary(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m 479\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m handle_torch_function(\n\u001b[1;32m 480\u001b[0m Tensor\u001b[38;5;241m.\u001b[39mbackward,\n\u001b[1;32m 481\u001b[0m (\u001b[38;5;28mself\u001b[39m,),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 486\u001b[0m inputs\u001b[38;5;241m=\u001b[39minputs,\n\u001b[1;32m 487\u001b[0m )\n\u001b[0;32m--> 488\u001b[0m \u001b[43mtorch\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mautograd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbackward\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 489\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgradient\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mretain_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcreate_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minputs\u001b[49m\n\u001b[1;32m 490\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
|
512 |
+
"File \u001b[0;32m~/anaconda3/lib/python3.10/site-packages/torch/autograd/__init__.py:204\u001b[0m, in \u001b[0;36mbackward\u001b[0;34m(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs)\u001b[0m\n\u001b[1;32m 199\u001b[0m retain_graph \u001b[38;5;241m=\u001b[39m create_graph\n\u001b[1;32m 201\u001b[0m \u001b[38;5;66;03m# The reason we repeat the same comment below is that\u001b[39;00m\n\u001b[1;32m 202\u001b[0m \u001b[38;5;66;03m# some Python versions print out the first line of a multi-line function\u001b[39;00m\n\u001b[1;32m 203\u001b[0m \u001b[38;5;66;03m# calls in the traceback and some print out the last line\u001b[39;00m\n\u001b[0;32m--> 204\u001b[0m \u001b[43mVariable\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_execution_engine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun_backward\u001b[49m\u001b[43m(\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# Calls into the C++ engine to run the backward pass\u001b[39;49;00m\n\u001b[1;32m 205\u001b[0m \u001b[43m \u001b[49m\u001b[43mtensors\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgrad_tensors_\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mretain_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcreate_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 206\u001b[0m \u001b[43m \u001b[49m\u001b[43mallow_unreachable\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maccumulate_grad\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n",
|
513 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
|
514 |
+
]
|
515 |
+
}
|
516 |
+
],
|
517 |
+
"source": [
|
518 |
+
"class TrainingArgumentsWithMPSSupport(TrainingArguments):\n",
|
519 |
+
" @property\n",
|
520 |
+
" def device(self) -> torch.device:\n",
|
521 |
+
" if torch.backends.mps.is_available():\n",
|
522 |
+
" return torch.device(\"mps\")\n",
|
523 |
+
" else:\n",
|
524 |
+
" return torch.device(\"cpu\")\n",
|
525 |
+
"\n",
|
526 |
+
"training_args = TrainingArgumentsWithMPSSupport(\n",
|
527 |
+
" output_dir = './results',\n",
|
528 |
+
" num_train_epochs=1,\n",
|
529 |
+
" per_device_train_batch_size=16,\n",
|
530 |
+
" per_device_eval_batch_size=16,\n",
|
531 |
+
" warmup_steps=500,\n",
|
532 |
+
" learning_rate=5e-5,\n",
|
533 |
+
" weight_decay=0.01,\n",
|
534 |
+
" logging_dir='./logs',\n",
|
535 |
+
" logging_steps=10,\n",
|
536 |
+
")\n",
|
537 |
+
"\n",
|
538 |
+
"trainer = Trainer(\n",
|
539 |
+
" model=model,\n",
|
540 |
+
" args=training_args,\n",
|
541 |
+
" train_dataset=train_dataset,\n",
|
542 |
+
" eval_dataset=val_dataset,\n",
|
543 |
+
")\n",
|
544 |
+
"\n",
|
545 |
+
"trainer.train()"
|
546 |
+
]
|
547 |
+
},
|
548 |
+
{
|
549 |
+
"cell_type": "code",
|
550 |
+
"execution_count": 21,
|
551 |
+
"metadata": {},
|
552 |
+
"outputs": [
|
553 |
+
{
|
554 |
+
"name": "stderr",
|
555 |
+
"output_type": "stream",
|
556 |
+
"text": [
|
557 |
+
"Saving model checkpoint to ./model_checkpoint/done\n",
|
558 |
+
"Configuration saved in ./model_checkpoint/done/config.json\n",
|
559 |
+
"Model weights saved in ./model_checkpoint/done/pytorch_model.bin\n"
|
560 |
+
]
|
561 |
+
}
|
562 |
+
],
|
563 |
+
"source": [
|
564 |
+
"trainer.save_model('./model_checkpoint/done')"
|
565 |
+
]
|
566 |
+
},
|
567 |
+
{
|
568 |
+
"cell_type": "code",
|
569 |
+
"execution_count": 18,
|
570 |
+
"metadata": {
|
571 |
+
"tags": []
|
572 |
+
},
|
573 |
+
"outputs": [],
|
574 |
+
"source": [
|
575 |
+
"from transformers import BertTokenizer, BertForSequenceClassification\n",
|
576 |
+
"#saved = DistilBertModel.from_pretrained('./model_checkpoint/trained', num_labels=6, problem_type=\"multi_label_classification\")\n",
|
577 |
+
"saved = BertForSequenceClassification.from_pretrained('./model_checkpoint/fine_tuned')"
|
578 |
+
]
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"cell_type": "code",
|
582 |
+
"execution_count": 19,
|
583 |
+
"metadata": {},
|
584 |
+
"outputs": [
|
585 |
+
{
|
586 |
+
"ename": "NameError",
|
587 |
+
"evalue": "name 'trainer' is not defined",
|
588 |
+
"output_type": "error",
|
589 |
+
"traceback": [
|
590 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
591 |
+
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
592 |
+
"Cell \u001b[0;32mIn[19], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mtrainer\u001b[49m\u001b[38;5;241m.\u001b[39mevaluate()\n",
|
593 |
+
"\u001b[0;31mNameError\u001b[0m: name 'trainer' is not defined"
|
594 |
+
]
|
595 |
+
}
|
596 |
+
],
|
597 |
+
"source": [
|
598 |
+
"trainer.evaluate()"
|
599 |
+
]
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"cell_type": "code",
|
603 |
+
"execution_count": 59,
|
604 |
+
"metadata": {},
|
605 |
+
"outputs": [
|
606 |
+
{
|
607 |
+
"data": {
|
608 |
+
"text/plain": [
|
609 |
+
"[[0.4601849317550659,\n",
|
610 |
+
" 0.0626736581325531,\n",
|
611 |
+
" 0.1962047964334488,\n",
|
612 |
+
" 0.0715285912156105,\n",
|
613 |
+
" 0.1363525241613388,\n",
|
614 |
+
" 0.0730554461479187]]"
|
615 |
+
]
|
616 |
+
},
|
617 |
+
"execution_count": 59,
|
618 |
+
"metadata": {},
|
619 |
+
"output_type": "execute_result"
|
620 |
+
}
|
621 |
+
],
|
622 |
+
"source": [
|
623 |
+
"text = \"fun\"\n",
|
624 |
+
"encoded_input = tokenizer(text, return_tensors=\"pt\")\n",
|
625 |
+
"outputs = saved(**encoded_input)\n",
|
626 |
+
"predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)\n",
|
627 |
+
"predictions = predictions.cpu().detach().numpy()\n",
|
628 |
+
"predictions.tolist()"
|
629 |
+
]
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"cell_type": "code",
|
633 |
+
"execution_count": 48,
|
634 |
+
"metadata": {},
|
635 |
+
"outputs": [],
|
636 |
+
"source": [
|
637 |
+
"res = [1 if x >= 0.5 else 0 for x in predictions[0]]"
|
638 |
+
]
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"cell_type": "code",
|
642 |
+
"execution_count": 49,
|
643 |
+
"metadata": {},
|
644 |
+
"outputs": [
|
645 |
+
{
|
646 |
+
"data": {
|
647 |
+
"text/plain": [
|
648 |
+
"[1, 0, 0, 0, 0, 0]"
|
649 |
+
]
|
650 |
+
},
|
651 |
+
"execution_count": 49,
|
652 |
+
"metadata": {},
|
653 |
+
"output_type": "execute_result"
|
654 |
+
}
|
655 |
+
],
|
656 |
+
"source": [
|
657 |
+
"res"
|
658 |
+
]
|
659 |
+
}
|
660 |
+
],
|
661 |
+
"metadata": {
|
662 |
+
"colab": {
|
663 |
+
"provenance": []
|
664 |
+
},
|
665 |
+
"kernelspec": {
|
666 |
+
"display_name": "Python 3 (ipykernel)",
|
667 |
+
"language": "python",
|
668 |
+
"name": "python3"
|
669 |
+
},
|
670 |
+
"language_info": {
|
671 |
+
"codemirror_mode": {
|
672 |
+
"name": "ipython",
|
673 |
+
"version": 3
|
674 |
+
},
|
675 |
+
"file_extension": ".py",
|
676 |
+
"mimetype": "text/x-python",
|
677 |
+
"name": "python",
|
678 |
+
"nbconvert_exporter": "python",
|
679 |
+
"pygments_lexer": "ipython3",
|
680 |
+
"version": "3.10.9"
|
681 |
+
}
|
682 |
+
},
|
683 |
+
"nbformat": 4,
|
684 |
+
"nbformat_minor": 4
|
685 |
+
}
|
app.py
CHANGED
@@ -1,9 +1,11 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
models = ["cardiffnlp/twitter-xlm-roberta-base-sentiment", "nlptown/bert-base-multilingual-uncased-sentiment", "Tatyana/rubert-base-cased-sentiment-new"]
|
7 |
|
8 |
|
9 |
|
@@ -15,9 +17,20 @@ with st.form("form"):
|
|
15 |
|
16 |
if submitted:
|
17 |
model_name = models[models.index(selection)]
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
5 |
+
from huggingface_hub.inference_api import InferenceApi
|
6 |
+
import os
|
7 |
|
8 |
+
models = ["cardiffnlp/twitter-xlm-roberta-base-sentiment", "nlptown/bert-base-multilingual-uncased-sentiment", "Tatyana/rubert-base-cased-sentiment-new", "junming-qiu/BertToxicClassifier"]
|
|
|
9 |
|
10 |
|
11 |
|
|
|
17 |
|
18 |
if submitted:
|
19 |
model_name = models[models.index(selection)]
|
20 |
+
|
21 |
+
if model_name == "junming-qiu/BertToxicClassifier":
|
22 |
+
API_TOKEN=os.environ['API-KEY']
|
23 |
+
inference = InferenceApi(repo_id=model_name, token=API_TOKEN)
|
24 |
+
predictions = inference(inputs=text)[0]
|
25 |
+
predictions = sorted(predictions, key=lambda x: x['score'], reverse=True)
|
26 |
+
st.write(predictions[0]['label']+":", predictions[0]['score'])
|
27 |
+
st.write(predictions[1]['label']+":", predictions[1]['score'])
|
28 |
+
else:
|
29 |
+
|
30 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
32 |
+
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
33 |
+
result = classifier(text)
|
34 |
+
st.write("Label:", result[0]["label"])
|
35 |
+
st.write('Score: ', result[0]['score'])
|
36 |
+
|
init.bash
CHANGED
@@ -3,4 +3,4 @@ sudo apt install python3-pip
|
|
3 |
pip install streamlit
|
4 |
pip install transformers datasets
|
5 |
pip install torch
|
6 |
-
pip install sentencepiece
|
|
|
3 |
pip install streamlit
|
4 |
pip install transformers datasets
|
5 |
pip install torch
|
6 |
+
pip install sentencepiece
|
requirements.txt
CHANGED
@@ -2,4 +2,5 @@ streamlit
|
|
2 |
transformers
|
3 |
datasets
|
4 |
torch
|
5 |
-
sentencepiece
|
|
|
|
2 |
transformers
|
3 |
datasets
|
4 |
torch
|
5 |
+
sentencepiece
|
6 |
+
torch
|