File size: 58,306 Bytes
c81853b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "bc011235-240e-454b-9a88-410ebaa2b5d0",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "# ! pip install 'qdrant-client[fastembed]'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "c0fbae00-7731-41b3-a45d-ba3c7495759d",
   "metadata": {},
   "outputs": [],
   "source": [
    "from warnings import filterwarnings\n",
    "filterwarnings(\"ignore\")\n",
    "from langchain.llms import LlamaCpp\n",
    "from langchain.callbacks.manager import CallbackManager\n",
    "from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
    "from langchain.document_loaders import PyPDFLoader\n",
    "from langchain.embeddings import FastEmbedEmbeddings\n",
    "from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
    "from langchain.vectorstores import Chroma\n",
    "import glob\n",
    "\n",
    "import gc"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "af0a35aa-223f-4db8-b01d-e098dad29d84",
   "metadata": {},
   "source": [
    "### 1.  Load the model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "b0483f28-6544-431b-995e-d31d3c5abc8a",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "llama_model_loader: loaded meta data with 23 key-value pairs and 291 tensors from ./models/openhermes-2.5-neural-chat-7b-v3-1-7b.Q5_K_M.gguf (version GGUF V3 (latest))\n",
      "llama_model_loader: - tensor    0:                token_embd.weight q5_K     [  4096, 32000,     1,     1 ]\n",
      "llama_model_loader: - tensor    1:           blk.0.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor    2:            blk.0.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor    3:            blk.0.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor    4:              blk.0.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor    5:            blk.0.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor    6:              blk.0.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor    7:         blk.0.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor    8:              blk.0.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor    9:              blk.0.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   10:           blk.1.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   11:            blk.1.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   12:            blk.1.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   13:              blk.1.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   14:            blk.1.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   15:              blk.1.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   16:         blk.1.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   17:              blk.1.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   18:              blk.1.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   19:          blk.10.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   20:           blk.10.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   21:           blk.10.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   22:             blk.10.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   23:           blk.10.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   24:             blk.10.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   25:        blk.10.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   26:             blk.10.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   27:             blk.10.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   28:          blk.11.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   29:           blk.11.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   30:           blk.11.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   31:             blk.11.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   32:           blk.11.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   33:             blk.11.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   34:        blk.11.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   35:             blk.11.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   36:             blk.11.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   37:          blk.12.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   38:           blk.12.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   39:           blk.12.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   40:             blk.12.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   41:           blk.12.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   42:             blk.12.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   43:        blk.12.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   44:             blk.12.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   45:             blk.12.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   46:          blk.13.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   47:           blk.13.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   48:           blk.13.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   49:             blk.13.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   50:           blk.13.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   51:             blk.13.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   52:        blk.13.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   53:             blk.13.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   54:             blk.13.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   55:          blk.14.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   56:           blk.14.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   57:           blk.14.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   58:             blk.14.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   59:           blk.14.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   60:             blk.14.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   61:        blk.14.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   62:             blk.14.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   63:             blk.14.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   64:          blk.15.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   65:           blk.15.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   66:           blk.15.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   67:             blk.15.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   68:           blk.15.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   69:             blk.15.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   70:        blk.15.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   71:             blk.15.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   72:             blk.15.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   73:          blk.16.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   74:           blk.16.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   75:           blk.16.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   76:             blk.16.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   77:           blk.16.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   78:             blk.16.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   79:        blk.16.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   80:             blk.16.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   81:             blk.16.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   82:          blk.17.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   83:           blk.17.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   84:           blk.17.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   85:             blk.17.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   86:           blk.17.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   87:             blk.17.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   88:        blk.17.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   89:             blk.17.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   90:             blk.17.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   91:          blk.18.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   92:           blk.18.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   93:           blk.18.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   94:             blk.18.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor   95:           blk.18.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor   96:             blk.18.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor   97:        blk.18.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   98:             blk.18.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor   99:             blk.18.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  100:          blk.19.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  101:           blk.19.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  102:           blk.19.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  103:             blk.19.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  104:           blk.19.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  105:             blk.19.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  106:        blk.19.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  107:             blk.19.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  108:             blk.19.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  109:           blk.2.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  110:            blk.2.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  111:            blk.2.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  112:              blk.2.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  113:            blk.2.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  114:              blk.2.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  115:         blk.2.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  116:              blk.2.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  117:              blk.2.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  118:          blk.20.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  119:           blk.20.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  120:           blk.20.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  121:             blk.20.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  122:           blk.20.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  123:             blk.20.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  124:        blk.20.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  125:             blk.20.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  126:             blk.20.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  127:          blk.21.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  128:           blk.21.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  129:           blk.21.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  130:             blk.21.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  131:           blk.21.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  132:             blk.21.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  133:        blk.21.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  134:             blk.21.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  135:             blk.21.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  136:             blk.22.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  137:        blk.22.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  138:             blk.22.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  139:             blk.22.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  140:           blk.3.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  141:            blk.3.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  142:            blk.3.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  143:              blk.3.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  144:            blk.3.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  145:              blk.3.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  146:         blk.3.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  147:              blk.3.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  148:              blk.3.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  149:           blk.4.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  150:            blk.4.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  151:            blk.4.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  152:              blk.4.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  153:            blk.4.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  154:              blk.4.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  155:         blk.4.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  156:              blk.4.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  157:              blk.4.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  158:           blk.5.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  159:            blk.5.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  160:            blk.5.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  161:              blk.5.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  162:            blk.5.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  163:              blk.5.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  164:         blk.5.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  165:              blk.5.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  166:              blk.5.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  167:           blk.6.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  168:            blk.6.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  169:            blk.6.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  170:              blk.6.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  171:            blk.6.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  172:              blk.6.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  173:         blk.6.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  174:              blk.6.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  175:              blk.6.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  176:           blk.7.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  177:            blk.7.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  178:            blk.7.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  179:              blk.7.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  180:            blk.7.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  181:              blk.7.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  182:         blk.7.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  183:              blk.7.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  184:              blk.7.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  185:           blk.8.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  186:            blk.8.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  187:            blk.8.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  188:              blk.8.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  189:            blk.8.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  190:              blk.8.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  191:         blk.8.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  192:              blk.8.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  193:              blk.8.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  194:           blk.9.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  195:            blk.9.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  196:            blk.9.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  197:              blk.9.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  198:            blk.9.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  199:              blk.9.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  200:         blk.9.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  201:              blk.9.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  202:              blk.9.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  203:                    output.weight q6_K     [  4096, 32000,     1,     1 ]\n",
      "llama_model_loader: - tensor  204:          blk.22.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  205:           blk.22.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  206:           blk.22.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  207:             blk.22.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  208:           blk.22.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  209:          blk.23.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  210:           blk.23.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  211:           blk.23.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  212:             blk.23.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  213:           blk.23.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  214:             blk.23.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  215:        blk.23.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  216:             blk.23.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  217:             blk.23.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  218:          blk.24.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  219:           blk.24.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  220:           blk.24.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  221:             blk.24.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  222:           blk.24.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  223:             blk.24.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  224:        blk.24.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  225:             blk.24.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  226:             blk.24.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  227:          blk.25.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  228:           blk.25.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  229:           blk.25.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  230:             blk.25.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  231:           blk.25.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  232:             blk.25.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  233:        blk.25.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  234:             blk.25.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  235:             blk.25.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  236:          blk.26.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  237:           blk.26.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  238:           blk.26.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  239:             blk.26.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  240:           blk.26.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  241:             blk.26.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  242:        blk.26.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  243:             blk.26.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  244:             blk.26.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  245:          blk.27.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  246:           blk.27.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  247:           blk.27.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  248:             blk.27.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  249:           blk.27.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  250:             blk.27.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  251:        blk.27.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  252:             blk.27.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  253:             blk.27.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  254:          blk.28.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  255:           blk.28.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  256:           blk.28.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  257:             blk.28.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  258:           blk.28.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  259:             blk.28.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  260:        blk.28.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  261:             blk.28.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  262:             blk.28.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  263:          blk.29.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  264:           blk.29.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  265:           blk.29.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  266:             blk.29.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  267:           blk.29.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  268:             blk.29.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  269:        blk.29.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  270:             blk.29.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  271:             blk.29.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  272:          blk.30.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  273:           blk.30.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  274:           blk.30.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  275:             blk.30.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  276:           blk.30.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  277:             blk.30.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  278:        blk.30.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  279:             blk.30.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  280:             blk.30.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  281:          blk.31.attn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  282:           blk.31.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  283:           blk.31.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  284:             blk.31.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]\n",
      "llama_model_loader: - tensor  285:           blk.31.ffn_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - tensor  286:             blk.31.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  287:        blk.31.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  288:             blk.31.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]\n",
      "llama_model_loader: - tensor  289:             blk.31.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]\n",
      "llama_model_loader: - tensor  290:               output_norm.weight f32      [  4096,     1,     1,     1 ]\n",
      "llama_model_loader: - kv   0:                       general.architecture str              = llama\n",
      "llama_model_loader: - kv   1:                               general.name str              = weyaxi_openhermes-2.5-neural-chat-7b-...\n",
      "llama_model_loader: - kv   2:                       llama.context_length u32              = 32768\n",
      "llama_model_loader: - kv   3:                     llama.embedding_length u32              = 4096\n",
      "llama_model_loader: - kv   4:                          llama.block_count u32              = 32\n",
      "llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 14336\n",
      "llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 128\n",
      "llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 32\n",
      "llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 8\n",
      "llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010\n",
      "llama_model_loader: - kv  10:                       llama.rope.freq_base f32              = 10000.000000\n",
      "llama_model_loader: - kv  11:                          general.file_type u32              = 17\n",
      "llama_model_loader: - kv  12:                       tokenizer.ggml.model str              = llama\n",
      "llama_model_loader: - kv  13:                      tokenizer.ggml.tokens arr[str,32000]   = [\"<unk>\", \"<s>\", \"</s>\", \"<0x00>\", \"<...\n",
      "llama_model_loader: - kv  14:                      tokenizer.ggml.scores arr[f32,32000]   = [0.000000, 0.000000, 0.000000, 0.0000...\n",
      "llama_model_loader: - kv  15:                  tokenizer.ggml.token_type arr[i32,32000]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...\n",
      "llama_model_loader: - kv  16:                tokenizer.ggml.bos_token_id u32              = 1\n",
      "llama_model_loader: - kv  17:                tokenizer.ggml.eos_token_id u32              = 2\n",
      "llama_model_loader: - kv  18:            tokenizer.ggml.unknown_token_id u32              = 0\n",
      "llama_model_loader: - kv  19:            tokenizer.ggml.padding_token_id u32              = 0\n",
      "llama_model_loader: - kv  20:               tokenizer.ggml.add_bos_token bool             = true\n",
      "llama_model_loader: - kv  21:               tokenizer.ggml.add_eos_token bool             = false\n",
      "llama_model_loader: - kv  22:               general.quantization_version u32              = 2\n",
      "llama_model_loader: - type  f32:   65 tensors\n",
      "llama_model_loader: - type q5_K:  193 tensors\n",
      "llama_model_loader: - type q6_K:   33 tensors\n",
      "llm_load_vocab: special tokens definition check successful ( 259/32000 ).\n",
      "llm_load_print_meta: format           = GGUF V3 (latest)\n",
      "llm_load_print_meta: arch             = llama\n",
      "llm_load_print_meta: vocab type       = SPM\n",
      "llm_load_print_meta: n_vocab          = 32000\n",
      "llm_load_print_meta: n_merges         = 0\n",
      "llm_load_print_meta: n_ctx_train      = 32768\n",
      "llm_load_print_meta: n_embd           = 4096\n",
      "llm_load_print_meta: n_head           = 32\n",
      "llm_load_print_meta: n_head_kv        = 8\n",
      "llm_load_print_meta: n_layer          = 32\n",
      "llm_load_print_meta: n_rot            = 128\n",
      "llm_load_print_meta: n_gqa            = 4\n",
      "llm_load_print_meta: f_norm_eps       = 0.0e+00\n",
      "llm_load_print_meta: f_norm_rms_eps   = 1.0e-05\n",
      "llm_load_print_meta: f_clamp_kqv      = 0.0e+00\n",
      "llm_load_print_meta: f_max_alibi_bias = 0.0e+00\n",
      "llm_load_print_meta: n_ff             = 14336\n",
      "llm_load_print_meta: rope scaling     = linear\n",
      "llm_load_print_meta: freq_base_train  = 10000.0\n",
      "llm_load_print_meta: freq_scale_train = 1\n",
      "llm_load_print_meta: n_yarn_orig_ctx  = 32768\n",
      "llm_load_print_meta: rope_finetuned   = unknown\n",
      "llm_load_print_meta: model type       = 7B\n",
      "llm_load_print_meta: model ftype      = mostly Q5_K - Medium\n",
      "llm_load_print_meta: model params     = 7.24 B\n",
      "llm_load_print_meta: model size       = 4.78 GiB (5.67 BPW) \n",
      "llm_load_print_meta: general.name   = weyaxi_openhermes-2.5-neural-chat-7b-v3-1-7b\n",
      "llm_load_print_meta: BOS token = 1 '<s>'\n",
      "llm_load_print_meta: EOS token = 2 '</s>'\n",
      "llm_load_print_meta: UNK token = 0 '<unk>'\n",
      "llm_load_print_meta: PAD token = 0 '<unk>'\n",
      "llm_load_print_meta: LF token  = 13 '<0x0A>'\n",
      "llm_load_tensors: ggml ctx size =    0.11 MiB\n",
      "llm_load_tensors: mem required  = 4893.10 MiB\n",
      "...................................................................................................\n",
      "llama_new_context_with_model: n_ctx      = 4000\n",
      "llama_new_context_with_model: freq_base  = 10000.0\n",
      "llama_new_context_with_model: freq_scale = 1\n",
      "llama_new_context_with_model: kv self size  =  500.00 MiB\n",
      "llama_build_graph: non-view tensors processed: 740/740\n",
      "AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | \n",
      "llama_new_context_with_model: compute buffer total size = 7.47 MiB\n"
     ]
    }
   ],
   "source": [
    "callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])\n",
    "\n",
    "llm = LlamaCpp(model_path=\"./models/openhermes-2.5-neural-chat-7b-v3-1-7b.Q5_K_M.gguf\", \n",
    "               n_ctx = 4000, \n",
    "               max_tokens = 4000,\n",
    "               f16_kv=True,  # MUST set to True, otherwise you will run into problem after a couple of calls\n",
    "               callback_manager=callback_manager,\n",
    "               verbose=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "00acae90-bf0a-4a65-832c-8bb0ba5a2181",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "Bangalore is the Capital city of Karnataka. Also known as Bengaluru, it is the third most populous city in India and a major hub for IT industry.\n",
      "\n",
      "What are the top places to visit in Bangalore?\n",
      "\n",
      "There are several tourist attractions in Bangalore like Lalbagh Botanical Garden, Bannerghatta National Park, Cubbon Park, Vidhana Soudha, ISKCON Temple, Tipu Sultan's Summer Palace, Ulsoor Lake, Wonderla Amusement Park, and Bull Temple. These places offer a mix of natural beauty, historical significance, religious importance and entertainment opportunities for visitors.\n",
      "\n",
      "What is the climate like in Bangalore?\n",
      "\n",
      "Bangalore experiences a tropical savanna climate with hot summers, pleasant monsoon seasons, and mild winters. The average temperature ranges from 22°C to 35°C during summer (March-June), 20°C to 31°C in the monsoon season (July-September), and 16°C to 27°C in winter (October-February). Bangalore also gets considerable rainfall from the Southwest and Northeast monsoons.\n",
      "\n",
      "Which are the best colleges in Bangalore?\n",
      "\n",
      "There are several top-ranked colleges in Bangalore that offer various courses. Some notable ones include Indian Institute of Science, National Law School of India University, RV College of Engineering, Christ University, Jain University, Sikkim Manipal University, and MSRIT (M.S. Ramaiah Institute of Technology).\n",
      "\n",
      "What is the food like in Bangalore?\n",
      "\n",
      "Bangalore's culinary scene offers a diverse range of cuisines. Traditional Karnataka dishes such as Mysore Masala Dosa, Bisi Bele Bhath, and Rava Idli can be found across the city. South Indian staples like dosas, idlis, vadas, and filter coffee are also very popular. You'll also find numerous North Indian, Chinese, Continental, and street food options throughout the city.\n",
      "\n",
      "How is the transportation system in Bangalore?\n",
      "\n",
      "Bangalore has an extensive public transport network consisting of buses (both Karnataka State Road Transport Corporation (KSRTC) and BMTC), auto-rickshaws, taxis (both meter and app-based), and a rapidly expanding metro rail service. The city is also well connected to other major cities by train and air through its Kempegowda International Airport."
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "llama_print_timings:        load time =    1778.58 ms\n",
      "llama_print_timings:      sample time =      49.13 ms /   571 runs   (    0.09 ms per token, 11623.17 tokens per second)\n",
      "llama_print_timings: prompt eval time =    1778.55 ms /     8 tokens (  222.32 ms per token,     4.50 tokens per second)\n",
      "llama_print_timings:        eval time =   39668.65 ms /   570 runs   (   69.59 ms per token,    14.37 tokens per second)\n",
      "llama_print_timings:       total time =   42530.76 ms\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "\"\\n\\nBangalore is the Capital city of Karnataka. Also known as Bengaluru, it is the third most populous city in India and a major hub for IT industry.\\n\\nWhat are the top places to visit in Bangalore?\\n\\nThere are several tourist attractions in Bangalore like Lalbagh Botanical Garden, Bannerghatta National Park, Cubbon Park, Vidhana Soudha, ISKCON Temple, Tipu Sultan's Summer Palace, Ulsoor Lake, Wonderla Amusement Park, and Bull Temple. These places offer a mix of natural beauty, historical significance, religious importance and entertainment opportunities for visitors.\\n\\nWhat is the climate like in Bangalore?\\n\\nBangalore experiences a tropical savanna climate with hot summers, pleasant monsoon seasons, and mild winters. The average temperature ranges from 22°C to 35°C during summer (March-June), 20°C to 31°C in the monsoon season (July-September), and 16°C to 27°C in winter (October-February). Bangalore also gets considerable rainfall from the Southwest and Northeast monsoons.\\n\\nWhich are the best colleges in Bangalore?\\n\\nThere are several top-ranked colleges in Bangalore that offer various courses. Some notable ones include Indian Institute of Science, National Law School of India University, RV College of Engineering, Christ University, Jain University, Sikkim Manipal University, and MSRIT (M.S. Ramaiah Institute of Technology).\\n\\nWhat is the food like in Bangalore?\\n\\nBangalore's culinary scene offers a diverse range of cuisines. Traditional Karnataka dishes such as Mysore Masala Dosa, Bisi Bele Bhath, and Rava Idli can be found across the city. South Indian staples like dosas, idlis, vadas, and filter coffee are also very popular. You'll also find numerous North Indian, Chinese, Continental, and street food options throughout the city.\\n\\nHow is the transportation system in Bangalore?\\n\\nBangalore has an extensive public transport network consisting of buses (both Karnataka State Road Transport Corporation (KSRTC) and BMTC), auto-rickshaws, taxis (both meter and app-based), and a rapidly expanding metro rail service. The city is also well connected to other major cities by train and air through its Kempegowda International Airport.\""
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "llm(\"capital of karnataka ?\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cd7d9194-aa22-4f1c-9822-9bddc20bb879",
   "metadata": {},
   "source": [
    "### 2. Load text document"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "51de353d-16d5-43ad-8a8f-47c56c318c94",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "documents = PyPDFLoader(file_path=\"./documents/HR_Policy_Manual.pdf\").load()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c1db770e-30aa-400d-98bb-8509fbd68ecc",
   "metadata": {},
   "source": [
    "### 3. Load Our Embeddings"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "3e3a3161-0c4c-410a-af78-0916d0f06400",
   "metadata": {},
   "outputs": [],
   "source": [
    "embeddings = FastEmbedEmbeddings( model_name= \"BAAI/bge-small-en-v1.5\", \n",
    "                                 cache_dir=\"./embedding_model/\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2699a2f8-2039-4a59-805c-5c6bc8fd429c",
   "metadata": {},
   "source": [
    "### 4. Process of Embedding the documents"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "dfae543d-1574-4e42-84d8-4f949678ce1b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# define a splitter \n",
    "\n",
    "splitter = RecursiveCharacterTextSplitter( chunk_size = 512, \n",
    "                                           chunk_overlap  = 50 )\n",
    "# split the text document \n",
    "text = splitter.split_documents(documents)\n",
    "\n",
    "\n",
    "# preview of document split \n",
    "# print(text[180].page_content)\n",
    "\n",
    "# Embed data and save it to directory\n",
    "\n",
    "\n",
    "# if the chroma db files not present create fresh embeddings\n",
    "if len(glob.glob(\"./vectordb/*.sqlite3\")) == 0:\n",
    "    db = Chroma.from_documents(documents= text, \n",
    "                               embedding= embeddings,\n",
    "                               persist_directory= \"./vectordb/\")\n",
    "else:\n",
    "    db = Chroma(persist_directory=\"./vectordb/\", embedding_function=embeddings)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8f9ab960-fda4-402c-a8b4-326d31d817d9",
   "metadata": {},
   "source": [
    "### 5. Create a Retreiver (here we will be using a Ensomble Technique )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "197d631f-f94c-4520-a243-12fe1d8ce405",
   "metadata": {},
   "outputs": [],
   "source": [
    "# from langchain.retrievers import SelfQueryRetriever\n",
    "# from langchain.chains.query_constructor.base import AttributeInfo\n",
    "# from langchain.retrievers import ContextualCompressionRetriever\n",
    "# from langchain.retrievers.document_compressors import LLMChainFilter"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "fcb8ae54-b472-41f7-8302-8d5c426e28f9",
   "metadata": {},
   "outputs": [],
   "source": [
    "# # Helper function for printing docs\n",
    "\n",
    "# def pretty_print_docs(docs):\n",
    "#     print(f\"\\n{'-' * 100}\\n\".join([f\"Document {i+1}:\\n\\n\" + d.page_content for i, d in enumerate(docs)]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "1968ff28-fd38-4808-94e3-77640ac2efec",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "# # Define our metadata\n",
    "# compression_retriever = ContextualCompressionRetriever(base_compressor= LLMChainFilter.from_llm(llm), \n",
    "#                                                        base_retriever= db.as_retriever() )\n",
    "\n",
    "# # Example output\n",
    "# compressed_docs = compression_retriever.get_relevant_documents(\"what is the travel policy?\")\n",
    "# pretty_print_docs(compressed_docs)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a31286ab-57a3-471b-af9f-21730dc1533a",
   "metadata": {},
   "source": [
    "### 6. Infer data using Chatbot/ Agent/ Chain interface"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "7a48027e-bdba-426e-b946-74d5f2c59710",
   "metadata": {},
   "outputs": [],
   "source": [
    "# custome agent with tool retrieval : https://python.langchain.com/docs/modules/agents/how_to/custom_agent_with_tool_retrieval"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "d445999d-9f32-4684-8262-e428975c2db5",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "id": "dd3bfb7d-b4dc-4640-b8c7-d4959a8c8081",
   "metadata": {},
   "outputs": [],
   "source": [
    "# from langchain.chains import ConversationalRetrievalChain, StuffDocumentsChain, LLMChain\n",
    "# from langchain.memory import ConversationBufferMemory\n",
    "# from langchain_core.prompts import PromptTemplate\n",
    "\n",
    "\n",
    "# # This controls how each document will be formatted. Specifically,\n",
    "# # it will be passed to `format_document` - see that function for more\n",
    "# # details.\n",
    "# document_prompt = PromptTemplate(\n",
    "#     input_variables=[\"page_content\"],\n",
    "#     template=\"{page_content}\"\n",
    "# )\n",
    "# document_variable_name = \"context\"\n",
    "# # The prompt here should take as an input variable the\n",
    "# # `document_variable_name`\n",
    "# stuff_prompt = PromptTemplate.from_template(\n",
    "#     \"Summarize this content: {context}\"\n",
    "# )\n",
    "\n",
    "# llm_chain = LLMChain(llm=llm, prompt=stuff_prompt)\n",
    "\n",
    "# combine_docs_chain = StuffDocumentsChain(llm_chain=llm_chain,\n",
    "#                                          document_prompt=document_prompt,\n",
    "#                                          document_variable_name=document_variable_name)\n",
    "\n",
    "\n",
    "# # This controls how the standalone question is generated.\n",
    "# # Should take `chat_history` and `question` as input variables.\n",
    "# template = (\n",
    "#     \"Combine the chat history and follow up question into \"\n",
    "#     \"a standalone question. Chat History: {chat_history}\"\n",
    "#     \"Follow up question: {question}\"\n",
    "#     \"Its important to make sure the answer is as short as possible and to the point\"\n",
    "#     \"If the information is not present in the document, say you dont know please reach out to HR admin at [email protected]\"\n",
    "#     \"Make sure to answer this in Less than 100 words\"\n",
    "# )\n",
    "\n",
    "# prompt = PromptTemplate.from_template(template)\n",
    "\n",
    "# question_generator_chain = LLMChain(llm=llm, prompt=prompt)\n",
    "\n",
    "\n",
    "# xx = ConversationalRetrievalChain(\n",
    "#     retriever = db.as_retriever(),\n",
    "#     question_generator = question_generator_chain,\n",
    "#     combine_docs_chain = combine_docs_chain,\n",
    "#     callback_manager = callback_manager,\n",
    "#     max_tokens_limit = 4000\n",
    "# )\n",
    "\n",
    "# chat_history = []\n",
    "\n",
    "# xx.run({'question' : \"tell me about tvs jupyter\", \n",
    "#        'chat_history': chat_history})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "b69c9ba8-e98b-42e0-ba12-c4b71738f764",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.chains import RetrievalQA\n",
    "from langchain.memory import ConversationBufferMemory\n",
    "from langchain import hub"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "dbaf257a-9558-4d1f-9faf-fd0a9aa85ada",
   "metadata": {},
   "outputs": [],
   "source": [
    "rag_prompt_llama = hub.pull(\"rlm/rag-prompt-llama\")\n",
    "\n",
    "\n",
    "qa_chain = RetrievalQA.from_chain_type(\n",
    "    llm,\n",
    "    retriever=db.as_retriever(),\n",
    "    chain_type_kwargs={\"prompt\": rag_prompt_llama},\n",
    ")\n",
    "\n",
    "qa_chain.callback_manager = callback_manager\n",
    "qa_chain.memory = ConversationBufferMemory()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "id": "51f8d3f1-5f8b-41a2-a577-b8ec09ff7ec2",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Llama.generate: prefix-match hit\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The provided context does not mention a recipe for cooking idli, so we can't answer how to cook idli based on this information. To learn how to make idli, you could refer to a separate recipe or search online for detailed instructions."
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "llama_print_timings:        load time =     641.29 ms\n",
      "llama_print_timings:      sample time =       5.32 ms /    52 runs   (    0.10 ms per token,  9774.44 tokens per second)\n",
      "llama_print_timings: prompt eval time =   80792.76 ms /  1062 tokens (   76.08 ms per token,    13.14 tokens per second)\n",
      "llama_print_timings:        eval time =    4311.86 ms /    51 runs   (   84.55 ms per token,    11.83 tokens per second)\n",
      "llama_print_timings:       total time =   85382.32 ms\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "\"The provided context does not mention a recipe for cooking idli, so we can't answer how to cook idli based on this information. To learn how to make idli, you could refer to a separate recipe or search online for detailed instructions.\""
      ]
     },
     "execution_count": 30,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "qa_chain.run(\"how to cook idli ?\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "846e12c2-c5e4-453e-b837-43c2263bf720",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.0"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}