Spaces:
Runtime error
Runtime error
File size: 3,708 Bytes
e2c03ea 1efc93d e2c03ea 1efc93d e2c03ea 1efc93d e2c03ea 1efc93d e2c03ea 1efc93d e2c03ea 1efc93d e2c03ea 1efc93d e2c03ea 1efc93d e2c03ea 1efc93d e2c03ea 1efc93d e2c03ea 1efc93d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Signal-to-Reconstruction Error (SRE) metric."""
import evaluate
import datasets
import numpy as np
_DESCRIPTION = """\
Compute the Signal-to-Reconstruction Error (SRE) metric. This metric is commonly used to
asses the performance of denoising, super-resolution and style transfer algorithms in
audio and image processing.
"""
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""
_KWARGS_DESCRIPTION = """
Args:
predictions (`list` of `np.array`): Predicted labels.
references (`list` of `np.array`): Ground truth labels.
sample_weight (`list` of `float`): Sample weights Defaults to None.
Returns:
sre (`float`): Signal-to-Reconstruction Error (SRE) metric. The SRE values are
positive and they are expressed in decibels (dB). The higher the SRE value, the better.
Examples:
Example 1-A simple example
>>> sre = evaluate.load("jpxkqx/signal_to_reconstruction_error")
>>> results = sre.compute(references=[[0, 0], [-1, -1]], predictions=[[0, 1], [0, 0]])
>>> print(results)
{"Signal-to-Reconstruction Error": 23.01}
"""
def signal_reconstruction_error(y_true: np.array, y_hat: np.array) -> np.array:
return 10 * np.log10(np.sum(y_true ** 2) / np.sum((y_true - y_hat) ** 2))
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class SignaltoReconstrutionError(evaluate.Metric):
def _info(self):
return evaluate.MetricInfo(
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=datasets.Features(self._get_feature_types()),
homepage="https://huggingface.co./spaces/jpxkqx/signal_to_reconstrution_error",
)
def _get_feature_types(self):
if self.config_name == "multilist":
return {
# 1st Seq - num_samples, 2nd Seq - Height, 3rd Seq - Width
"predictions": datasets.Sequence(
datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
),
"references": datasets.Sequence(
datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
),
}
else:
return {
# 1st Seq - Height, 2rd Seq - Width
"predictions": datasets.Sequence(
datasets.Sequence(datasets.Value("float32"))
),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("float32"))
),
}
def _compute(self, predictions, references, sample_weight=None):
"""Returns the scores"""
samples = zip(np.array(references), np.array(predictions))
psnrs = list(map(lambda args: signal_reconstruction_error(*args), samples))
return {
"Signal-to-Reconstruction Error": np.average(psnrs, weights=sample_weight)
}
|