SkalskiP's picture
use smaller model to improve CUDA usage
5ae5bca
raw
history blame
2.08 kB
import os
from typing import Union, Any, Tuple, Dict
from unittest.mock import patch
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoProcessor
from transformers.dynamic_module_utils import get_imports
FLORENCE_CHECKPOINT = "microsoft/Florence-2-base"
FLORENCE_OBJECT_DETECTION_TASK = '<OD>'
FLORENCE_DETAILED_CAPTION_TASK = '<MORE_DETAILED_CAPTION>'
FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK = '<CAPTION_TO_PHRASE_GROUNDING>'
FLORENCE_OPEN_VOCABULARY_DETECTION_TASK = '<OPEN_VOCABULARY_DETECTION>'
FLORENCE_DENSE_REGION_CAPTION_TASK = '<DENSE_REGION_CAPTION>'
def fixed_get_imports(filename: Union[str, os.PathLike]) -> list[str]:
"""Work around for https://huggingface.co./microsoft/phi-1_5/discussions/72."""
if not str(filename).endswith("/modeling_florence2.py"):
return get_imports(filename)
imports = get_imports(filename)
imports.remove("flash_attn")
return imports
def load_florence_model(
device: torch.device, checkpoint: str = FLORENCE_CHECKPOINT
) -> Tuple[Any, Any]:
with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports):
model = AutoModelForCausalLM.from_pretrained(
checkpoint, trust_remote_code=True).to(device).eval()
processor = AutoProcessor.from_pretrained(
checkpoint, trust_remote_code=True)
return model, processor
def run_florence_inference(
model: Any,
processor: Any,
device: torch.device,
image: Image,
task: str,
text: str = ""
) -> Tuple[str, Dict]:
prompt = task + text
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3
)
generated_text = processor.batch_decode(
generated_ids, skip_special_tokens=False)[0]
response = processor.post_process_generation(
generated_text, task=task, image_size=image.size)
return generated_text, response