Spaces:
Runtime error
Runtime error
jonathanjordan21
commited on
Commit
•
dfbf35f
1
Parent(s):
45dfa70
Initial commit
Browse files- app.py +68 -0
- components/__init__.py +0 -0
- components/caption_chain.py +12 -0
- components/pexels.py +81 -0
- components/tag_chain.py +16 -0
- components/utils.py +23 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.llms import HuggingFacePipeline
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, AutoModelForSeq2SeqLM
|
4 |
+
|
5 |
+
from components import caption_chain, tag_chain
|
6 |
+
from components import pexels, utils
|
7 |
+
import os, gc
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("declare-lab/flan-alpaca-gpt4-xl")
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained("declare-lab/flan-alpaca-gpt4-xl")
|
12 |
+
|
13 |
+
pipe = pipeline(
|
14 |
+
'text2text-generation',
|
15 |
+
model=model,
|
16 |
+
tokenizer= tokenizer,
|
17 |
+
max_length=120
|
18 |
+
)
|
19 |
+
|
20 |
+
local_llm = HuggingFacePipeline(pipeline=pipe)
|
21 |
+
|
22 |
+
llm_chain = caption_chain.chain(llm=local_llm)
|
23 |
+
sum_llm_chain = tag_chain.chain(llm=local_llm)
|
24 |
+
|
25 |
+
pexels_api_key = os.getenv('pexels_api_key')
|
26 |
+
|
27 |
+
def pred(product_name, orientation):
|
28 |
+
if orientation == "Shorts/Reels/TikTok (1080 x 1920)":
|
29 |
+
orientation = "potrait"
|
30 |
+
height = 1920
|
31 |
+
width = 1080
|
32 |
+
elif orientation == "Youtube Videos (1920 x 1080)":
|
33 |
+
orientation = "landscape"
|
34 |
+
height = 1080
|
35 |
+
width = 1920
|
36 |
+
else :
|
37 |
+
orientation = "square"
|
38 |
+
height = 1080
|
39 |
+
width = 1080
|
40 |
+
folder_name, sentences = pexels.generate_videos(product_name, pexels_api_key, orientation, height, width, llm_chain, sum_llm_chain)
|
41 |
+
gc.collect()
|
42 |
+
utils.combine_videos(folder_name)
|
43 |
+
return ["\n".join(sentences), os.path.join(folder_name, "Final_Ad_Video.mp4")]
|
44 |
+
#{'video':os.path.join(folder_name, "Final_Ad_Video.mp4"),
|
45 |
+
# 'captions':"\n".join(sentences)}
|
46 |
+
|
47 |
+
|
48 |
+
with gr.Blocks() as demo:
|
49 |
+
gr.Markdown(
|
50 |
+
"""
|
51 |
+
# Ads Generator
|
52 |
+
Create video ads based on your product name using AI
|
53 |
+
### Note : the video generation takes about 2-4 minutes
|
54 |
+
"""
|
55 |
+
)
|
56 |
+
dimension = gr.Dropdown(
|
57 |
+
["Shorts/Reels/TikTok (1080 x 1920)", "Facebook/Youtube Videos (1920 x 1080)", "Square (1080 x 1080)"],
|
58 |
+
label="Video Dimension", info="Choose dimension"
|
59 |
+
)
|
60 |
+
product_name = gr.Textbox(label="product name")
|
61 |
+
captions = gr.Textbox(label="captions")
|
62 |
+
video = gr.Video()
|
63 |
+
btn = gr.Button("Submit")
|
64 |
+
btn.click(pred, inputs=[product_name, dimension], outputs=[captions,video])
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
demo.launch()
|
components/__init__.py
ADDED
File without changes
|
components/caption_chain.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain import PromptTemplate
|
2 |
+
from langchain.chains import LLMChain
|
3 |
+
|
4 |
+
def chain(llm):
|
5 |
+
template = """Make 5 different advertisement captions about this product.
|
6 |
+
{product}
|
7 |
+
"""
|
8 |
+
|
9 |
+
prompt = PromptTemplate(template=template, input_variables=["product"])
|
10 |
+
|
11 |
+
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
12 |
+
return llm_chain
|
components/pexels.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import shutil,os,re
|
3 |
+
|
4 |
+
# Searching for the videos
|
5 |
+
def search_pexels(keyword, api_key, orientation='potrait', size='medium', endpoint='videos', num_pages=50):
|
6 |
+
|
7 |
+
if orientation not in ['potrait', 'landscape', 'square']:
|
8 |
+
raise Exception("Error! orientation must be one of {'square', 'landscape', 'potrait'}")
|
9 |
+
|
10 |
+
if size not in ['medium', 'small', 'large']:
|
11 |
+
raise Exception("Error! size must be one of ['medium', 'small', 'large']")
|
12 |
+
|
13 |
+
base_url = 'https://api.pexels.com/'
|
14 |
+
|
15 |
+
headers = {
|
16 |
+
'Authorization': f'{api_key}'
|
17 |
+
}
|
18 |
+
|
19 |
+
url = f'{base_url}{endpoint}/search?query={keyword}&per_page={num_pages}&orientation={orientation}&size={size}'
|
20 |
+
|
21 |
+
|
22 |
+
response = requests.get(url, headers=headers)
|
23 |
+
|
24 |
+
# Check if request was successful (status code 200)
|
25 |
+
if response.status_code == 200:
|
26 |
+
data = response.json()
|
27 |
+
return data
|
28 |
+
else:
|
29 |
+
print(f'Error: {response.status_code}')
|
30 |
+
|
31 |
+
|
32 |
+
# Video download function
|
33 |
+
def download_video(data, parent_path, height, width, links, i):
|
34 |
+
for x in data['videos'] :
|
35 |
+
if x['id'] in links:
|
36 |
+
continue
|
37 |
+
|
38 |
+
vid = x['video_files']
|
39 |
+
for v in vid:
|
40 |
+
if v['height'] == height and v['width'] == width :
|
41 |
+
with open(f"{os.path.join(parent_path,str(i) + '_' + str(v['id']))}.mp4", 'bw') as f:
|
42 |
+
f.write(requests.get(v['link']).content)
|
43 |
+
print("Sucessfully saved video in", os.path.join(parent_path,str(i) + '_' + str(v['id'])) + '.mp4')
|
44 |
+
return x['id']
|
45 |
+
|
46 |
+
|
47 |
+
# Utilizing the LLMs to find the relevant videos
|
48 |
+
def generate_videos(product, api_key, orientation, height, width, llm_chain=None, sum_llm_chain=None):
|
49 |
+
prod = product.strip().replace(" ", "_")
|
50 |
+
links = []
|
51 |
+
try :
|
52 |
+
# Split the paragraph by sentences
|
53 |
+
|
54 |
+
sentences = llm_chain.run(product.strip())
|
55 |
+
print('Sentence :', sentences)
|
56 |
+
|
57 |
+
# sentences = sentences.split(".")[:-1]
|
58 |
+
sentences = [x.strip() for x in re.split(r'\d+\.', sentences) if len(x) > 6]
|
59 |
+
|
60 |
+
|
61 |
+
# Create directory with the product's name
|
62 |
+
if os.path.exists(prod):
|
63 |
+
shutil.rmtree(prod)
|
64 |
+
os.mkdir(prod)
|
65 |
+
|
66 |
+
# Generate video for every sentence
|
67 |
+
print("Keyword :")
|
68 |
+
for i,s in enumerate(sentences):
|
69 |
+
keyword = sum_llm_chain.run(s)
|
70 |
+
print(i+1, ":", keyword)
|
71 |
+
data = search_pexels(keyword, api_key, orientation.lower())
|
72 |
+
link = download_video(data, prod, height, width, links,i)
|
73 |
+
links.append(link)
|
74 |
+
|
75 |
+
print("Success! videos has been generated")
|
76 |
+
except Exception as e :
|
77 |
+
print("Error! Failed generating videos")
|
78 |
+
print(e)
|
79 |
+
|
80 |
+
return prod, sentences
|
81 |
+
|
components/tag_chain.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.prompts import PromptTemplate
|
2 |
+
from langchain.chains import LLMChain
|
3 |
+
|
4 |
+
def chain(llm):
|
5 |
+
sum_template = """what is the most significant actions or places or things, say it in at most 5 words :
|
6 |
+
|
7 |
+
{sentence}
|
8 |
+
|
9 |
+
|
10 |
+
"""
|
11 |
+
|
12 |
+
sum_prompt = PromptTemplate(template=sum_template, input_variables=["sentence"])
|
13 |
+
|
14 |
+
sum_llm_chain = LLMChain(prompt=sum_prompt, llm=llm)
|
15 |
+
|
16 |
+
return sum_llm_chain
|
components/utils.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from moviepy.editor import VideoFileClip, concatenate_videoclips,vfx
|
2 |
+
import os
|
3 |
+
|
4 |
+
def combine_videos(folder_name):
|
5 |
+
|
6 |
+
length = len(os.listdir(folder_name))
|
7 |
+
|
8 |
+
vids = [VideoFileClip(os.path.join(folder_name,x)) for x in sorted(os.listdir(folder_name))]
|
9 |
+
|
10 |
+
combined = concatenate_videoclips(
|
11 |
+
[vid.subclip(0,7).fx(vfx.fadein,0.5).fx(vfx.fadeout,0.5) if vid.duration > 7 else vid.fx(vfx.fadein,0.5).fx(vfx.fadeout,0.5) for vid in vids],
|
12 |
+
# [VideoFileClip(os.path.join(folder_name,x)).subclip(0,7).fx(vfx.fadein,0.5).fx(vfx.fadeout,0.5) for x in sorted(os.listdir(folder_name))],
|
13 |
+
"compose",bg_color=None, padding=0
|
14 |
+
)
|
15 |
+
combined.write_videofile(os.path.join(folder_name, "Final_Ad_Video.mp4"))
|
16 |
+
|
17 |
+
# if length <= 6:
|
18 |
+
# combined = concatenate_videoclips([VideoFileClip(os.path.join(folder_name,x)).subclip(0,10) for x in os.listdir(folder_name)])
|
19 |
+
# combined.write_videofile(os.path.join(folder_name, "Ad_Video.mp4"))
|
20 |
+
# else :
|
21 |
+
# combined = concatenate_videoclips([VideoFileClip(os.path.join(folder_name,x)).subclip(0,60//length) for x in os.listdir(folder_name)])
|
22 |
+
# combined.write_videofile(os.path.join(folder_name, "Ad_Video.mp4"))
|
23 |
+
print("Done! Your ads video has been created")
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
moviepy
|
3 |
+
transformers
|
4 |
+
torch
|