johnowhitaker commited on
Commit
6e64f14
·
1 Parent(s): ca1fc51

from minGPT

Browse files
Files changed (1) hide show
  1. utils.py +47 -0
utils.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import numpy as np
3
+ import torch
4
+ import torch.nn as nn
5
+ from torch.nn import functional as F
6
+
7
+ def set_seed(seed):
8
+ random.seed(seed)
9
+ np.random.seed(seed)
10
+ torch.manual_seed(seed)
11
+ torch.cuda.manual_seed_all(seed)
12
+
13
+ def top_k_logits(logits, k):
14
+ v, ix = torch.topk(logits, k)
15
+ out = logits.clone()
16
+ out[out < v[:, [-1]]] = -float('Inf')
17
+ return out
18
+
19
+ @torch.no_grad()
20
+ def sample(model, x, steps, temperature=1.0, sample=False, top_k=None):
21
+ """
22
+ take a conditioning sequence of indices in x (of shape (b,t)) and predict the next token in
23
+ the sequence, feeding the predictions back into the model each time. Clearly the sampling
24
+ has quadratic complexity unlike an RNN that is only linear, and has a finite context window
25
+ of block_size, unlike an RNN that has an infinite context window.
26
+ """
27
+ block_size = model.get_block_size()
28
+ model.eval()
29
+ for k in range(steps):
30
+ x_cond = x if x.size(1) <= block_size else x[:, -block_size:] # crop context if needed
31
+ logits, _ = model(x_cond)
32
+ # pluck the logits at the final step and scale by temperature
33
+ logits = logits[:, -1, :] / temperature
34
+ # optionally crop probabilities to only the top k options
35
+ if top_k is not None:
36
+ logits = top_k_logits(logits, top_k)
37
+ # apply softmax to convert to probabilities
38
+ probs = F.softmax(logits, dim=-1)
39
+ # sample from the distribution or take the most likely
40
+ if sample:
41
+ ix = torch.multinomial(probs, num_samples=1)
42
+ else:
43
+ _, ix = torch.topk(probs, k=1, dim=-1)
44
+ # append to the sequence and continue
45
+ x = torch.cat((x, ix), dim=1)
46
+
47
+ return x