johnowhitaker commited on
Commit
9633e6a
·
1 Parent(s): d6b8beb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -45
app.py CHANGED
@@ -14,7 +14,7 @@ image_pipe = DDPMPipeline.from_pretrained(pipeline_name).to(device)
14
 
15
  # Set up the scheduler
16
  scheduler = DDIMScheduler.from_pretrained(pipeline_name)
17
- scheduler.set_timesteps(num_inference_steps=40)
18
 
19
  def color_loss(images, target_color=(0.1, 0.9, 0.5)):
20
  """Given a target color (R, G, B) return a loss for how far away on average
@@ -26,49 +26,24 @@ def color_loss(images, target_color=(0.1, 0.9, 0.5)):
26
 
27
 
28
  def generate(color, guidance_loss_scale):
29
-
30
- # Target color as RGB
31
- target_color = ImageColor.getcolor(color, "RGB")
32
-
33
- # Rescale from (0, 255) to (0, 1)
34
- target_color = [a/255 for a in target_color]
35
-
36
- # Initial random x - just one image but you could add a 'num_images' argument/input to give the user control
37
- x = torch.randn(1, 3, 256, 256).to(device)
38
-
39
- # Our custom sampling loop:
40
- for i, t in tqdm(enumerate(scheduler.timesteps)):
41
-
42
- # Prep the model input
43
- model_input = scheduler.scale_model_input(x, t)
44
-
45
- # predict the noise residual
46
- with torch.no_grad():
47
- noise_pred = image_pipe.unet(model_input, t)["sample"]
48
-
49
- # Set requires grad on x (shortcut method - we're doing this AFTER the unet)
50
- x = x.detach().requires_grad_()
51
-
52
- # Get the predicted x0:
53
- x0 = scheduler.step(noise_pred, t, x).pred_original_sample
54
-
55
- # Calculate loss
56
- loss = color_loss(x0, target_color) * guidance_loss_scale
57
-
58
- # Get gradient
59
- cond_grad = -torch.autograd.grad(loss, x)[0]
60
-
61
- # Modify x based on this gradient
62
- x = x.detach() + cond_grad
63
-
64
- # Now step with scheduler
65
- x = scheduler.step(noise_pred, t, x).prev_sample
66
-
67
- # Return the final output as an image (or image grid if there are more than one images)
68
- grid = torchvision.utils.make_grid(x, nrow=4)
69
- im = grid.permute(1, 2, 0).cpu().clip(-1, 1)*0.5 + 0.5
70
- return Image.fromarray(np.array(im*255).astype(np.uint8))
71
-
72
 
73
  inputs = [
74
  gr.ColorPicker(label="color", value='55FFAA'), # Add any inputs you need here
@@ -83,6 +58,7 @@ demo = gr.Interface(
83
  examples=[
84
  ["#BB2266"],["#44CCAA"] # You can provide some example inputs to get people started
85
  ],
 
86
 
87
  if __name__ == "__main__":
88
- demo.launch()
 
14
 
15
  # Set up the scheduler
16
  scheduler = DDIMScheduler.from_pretrained(pipeline_name)
17
+ scheduler.set_timesteps(num_inference_steps=20)
18
 
19
  def color_loss(images, target_color=(0.1, 0.9, 0.5)):
20
  """Given a target color (R, G, B) return a loss for how far away on average
 
26
 
27
 
28
  def generate(color, guidance_loss_scale):
29
+ target_color = ImageColor.getcolor(color, "RGB") # Target color as RGB
30
+ target_color = [a/255 for a in target_color] # Rescale from (0, 255) to (0, 1)
31
+ x = torch.randn(1, 3, 256, 256).to(device)
32
+ for i, t in tqdm(enumerate(scheduler.timesteps)):
33
+ model_input = scheduler.scale_model_input(x, t)
34
+ with torch.no_grad():
35
+ noise_pred = image_pipe.unet(model_input, t)["sample"]
36
+ x = x.detach().requires_grad_()
37
+ x0 = scheduler.step(noise_pred, t, x).pred_original_sample
38
+ loss = color_loss(x0, target_color) * guidance_loss_scale
39
+ cond_grad = -torch.autograd.grad(loss, x)[0]
40
+ x = x.detach() + cond_grad
41
+ x = scheduler.step(noise_pred, t, x).prev_sample
42
+ grid = torchvision.utils.make_grid(x, nrow=4)
43
+ im = grid.permute(1, 2, 0).cpu().clip(-1, 1)*0.5 + 0.5
44
+ im = Image.fromarray(np.array(im*255).astype(np.uint8))
45
+ im.save('test.jpeg')
46
+ return im
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
  inputs = [
49
  gr.ColorPicker(label="color", value='55FFAA'), # Add any inputs you need here
 
58
  examples=[
59
  ["#BB2266"],["#44CCAA"] # You can provide some example inputs to get people started
60
  ],
61
+ )
62
 
63
  if __name__ == "__main__":
64
+ demo.launch(enable_queue=True)