CLIPRGB-ImStack / app.py
johnowhitaker's picture
Update app.py
afcd5e0
import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
import kornia.augmentation as K
from CLIP import clip
from torchvision import transforms
from PIL import Image
import numpy as np
import math
from matplotlib import pyplot as plt
from fastprogress.fastprogress import master_bar, progress_bar
from IPython.display import HTML
from base64 import b64encode
# Definitions
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
def sinc(x):
return torch.where(x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([]))
def lanczos(x, a):
cond = torch.logical_and(-a < x, x < a)
out = torch.where(cond, sinc(x) * sinc(x/a), x.new_zeros([]))
return out / out.sum()
def ramp(ratio, width):
n = math.ceil(width / ratio + 1)
out = torch.empty([n])
cur = 0
for i in range(out.shape[0]):
out[i] = cur
cur += ratio
return torch.cat([-out[1:].flip([0]), out])[1:-1]
class Prompt(nn.Module):
def __init__(self, embed, weight=1., stop=float('-inf')):
super().__init__()
self.register_buffer('embed', embed)
self.register_buffer('weight', torch.as_tensor(weight))
self.register_buffer('stop', torch.as_tensor(stop))
def forward(self, input):
input_normed = F.normalize(input.unsqueeze(1), dim=2)
embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2)
dists = input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2)
dists = dists * self.weight.sign()
return self.weight.abs() * replace_grad(dists, torch.maximum(dists, self.stop)).mean()
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cutn, cut_pow=1.):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow
self.augs = nn.Sequential(
K.RandomHorizontalFlip(p=0.5),
K.RandomSharpness(0.3,p=0.4),
K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode='border'),
K.RandomPerspective(0.2,p=0.4),
K.ColorJitter(hue=0.01, saturation=0.01, p=0.7))
self.noise_fac = 0.1
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(self.cutn):
size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
batch = self.augs(torch.cat(cutouts, dim=0))
if self.noise_fac:
facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac)
batch = batch + facs * torch.randn_like(batch)
return batch
def resample(input, size, align_corners=True):
n, c, h, w = input.shape
dh, dw = size
input = input.view([n * c, 1, h, w])
if dh < h:
kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype)
pad_h = (kernel_h.shape[0] - 1) // 2
input = F.pad(input, (0, 0, pad_h, pad_h), 'reflect')
input = F.conv2d(input, kernel_h[None, None, :, None])
if dw < w:
kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype)
pad_w = (kernel_w.shape[0] - 1) // 2
input = F.pad(input, (pad_w, pad_w, 0, 0), 'reflect')
input = F.conv2d(input, kernel_w[None, None, None, :])
input = input.view([n, c, h, w])
return F.interpolate(input, size, mode='bicubic', align_corners=align_corners)
class ReplaceGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, x_forward, x_backward):
ctx.shape = x_backward.shape
return x_forward
@staticmethod
def backward(ctx, grad_in):
return None, grad_in.sum_to_size(ctx.shape)
replace_grad = ReplaceGrad.apply
# Set up CLIP
perceptor = clip.load('ViT-B/32', jit=False)[0].eval().requires_grad_(False).to(device)
normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711])
cut_size = perceptor.visual.input_resolution
cutn=8 # 64 but using less to save on CPU
cut_pow=1
make_cutouts = MakeCutouts(cut_size, cutn, cut_pow=cut_pow)
# ImStack
class ImStack(nn.Module):
""" This class represents an image as a series of stacked arrays, where each is 1/2
the resolution of the next. This is useful eg when trying to create an image to minimise
some loss - parameters in the early (small) layers can have an affect on the overall
structure and shapes while those in later layers act as residuals and fill in fine detail.
"""
def __init__(self, n_layers=3, base_size=32, scale=2,
init_image=None, out_size=256, decay=0.7):
"""Constructs the Image Stack
Args:
TODO
"""
super().__init__()
self.n_layers = n_layers
self.base_size = base_size
self.sig = nn.Sigmoid()
self.layers = []
for i in range(n_layers):
side = base_size * (scale**i)
tim = torch.randn((3, side, side)).to(device)*(decay**i)
self.layers.append(tim)
self.scalers = [nn.Upsample(scale_factor=out_size/(l.shape[1]), mode='bilinear', align_corners=False) for l in self.layers]
self.preview_scalers = [nn.Upsample(scale_factor=224/(l.shape[1]), mode='bilinear', align_corners=False) for l in self.layers]
if init_image != None: # Given a PIL image, decompose it into a stack
downscalers = [nn.Upsample(scale_factor=(l.shape[1]/out_size), mode='bilinear', align_corners=False) for l in self.layers]
final_side = base_size * (scale ** n_layers)
im = torch.tensor(np.array(init_image.resize((out_size, out_size)))/255).clip(1e-03, 1-1e-3) # Between 0 and 1 (non-inclusive)
im = im.permute(2, 0, 1).unsqueeze(0).to(device) # torch.log(im/(1-im))
for i in range(n_layers):self.layers[i] *= 0 # Sero out the layers
for i in range(n_layers):
side = base_size * (scale**i)
out = self.forward()
residual = (torch.logit(im) - torch.logit(out))
Image.fromarray((torch.logit(residual).detach().cpu().squeeze().permute([1, 2, 0]) * 255).numpy().astype(np.uint8)).save(f'residual{i}.png')
self.layers[i] = downscalers[i](residual).squeeze()
for l in self.layers: l.requires_grad = True
def forward(self):
im = self.scalers[0](self.layers[0].unsqueeze(0))
for i in range(1, self.n_layers):
im += self.scalers[i](self.layers[i].unsqueeze(0))
return self.sig(im)
def preview(self, n_preview=2):
im = self.preview_scalers[0](self.layers[0].unsqueeze(0))
for i in range(1, n_preview):
im += self.preview_scalers[i](self.layers[i].unsqueeze(0))
return self.sig(im)
def to_pil(self):
return Image.fromarray((self.forward().detach().cpu().squeeze().permute([1, 2, 0]) * 255).numpy().astype(np.uint8))
def preview_pil(self):
return Image.fromarray((self.preview().detach().cpu().squeeze().permute([1, 2, 0]) * 255).numpy().astype(np.uint8))
def save(self, fn):
self.to_pil().save(fn)
def plot_layers(self):
fig, axs = plt.subplots(1, self.n_layers, figsize=(15, 5))
for i in range(self.n_layers):
im = (self.sig(self.layers[i].unsqueeze(0)).detach().cpu().squeeze().permute([1, 2, 0]) * 255).numpy().astype(np.uint8)
axs[i].imshow(im)
def generate(text, n_steps):
lr=0.25 #@param
n_iter = int(n_steps)
# init_image=None #@param
weight_decay=1e-5 #@param
out_size=180 #@param
base_size=20 #@param
n_layers=3 #@param
scale=3 #@param
p_prompts = []
embed = perceptor.encode_text(clip.tokenize(text).to(device)).float()
p_prompts.append(Prompt(embed, 1, float('-inf')).to(device)) # 1 is the weight
# SOme negative prompts
n_prompts = []
for pr in ["Random noise", 'saturated rainbow RGB deep dream']:
embed = perceptor.encode_text(clip.tokenize(pr).to(device)).float()
n_prompts.append(Prompt(embed, 0.5, float('-inf')).to(device)) # 0.5 is the weight
# The ImageStack - trying a different scale and n_layers
ims = ImStack(base_size=base_size, scale=scale, n_layers=n_layers, out_size=out_size, decay=0.4)
optimizer = optim.Adam(ims.layers, lr=lr, weight_decay=weight_decay)
losses = []
for i in range(n_iter):
optimizer.zero_grad()
if i < 15: # Save time by skipping the cutouts and focusing on the lower layers
im = ims.preview(n_preview=1 + i//20 )
iii = perceptor.encode_image(normalize(im)).float()
else:
im = ims()
iii = perceptor.encode_image(normalize(make_cutouts(im))).float()
l = 0
for prompt in p_prompts:
l += prompt(iii)
for prompt in n_prompts:
l -= prompt(iii)
losses.append(float(l.detach().cpu()))
l.backward() # Backprop
optimizer.step() # Update
im = ims.to_pil()
return np.array(im)
iface = gr.Interface(fn=generate,
description = "Attempt at a Gradio demo for https://colab.research.google.com/drive/1dBPXIspuMocqfcJqfjCn_PFeUfr36KGu?usp=sharing. A little slow on CPU so check out the colab for higher res generation.",
inputs=[
gr.inputs.Textbox(label="Text Input"),
gr.inputs.Number(default=64, label="N Steps")
],
outputs=[
gr.outputs.Image(type="numpy", label="Output Image")
],
).launch(enable_queue=True)