Spaces:
Sleeping
Sleeping
johnnydevriese
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
# Define the LLM models and their properties
|
5 |
+
models = {
|
6 |
+
"gpt-4o-2024-08-06": {
|
7 |
+
"input_price_per_1M": 2.50,
|
8 |
+
"output_price_per_1M": 10.00,
|
9 |
+
"max_input_tokens": 128_000,
|
10 |
+
},
|
11 |
+
"gpt-4o-mini-2024-07-18": {
|
12 |
+
"input_price_per_1M": 0.15,
|
13 |
+
"output_price_per_1M": 0.600,
|
14 |
+
"max_input_tokens": 128_000,
|
15 |
+
},
|
16 |
+
"Claude 3.5 Sonnet": {
|
17 |
+
"input_price_per_1M": 3.0,
|
18 |
+
"output_price_per_1M": 15.0,
|
19 |
+
"max_input_tokens": 200_000,
|
20 |
+
},
|
21 |
+
"GPT-3.5-turbo": {
|
22 |
+
"input_price_per_1M": 0.5,
|
23 |
+
"output_price_per_1M": 1.5,
|
24 |
+
"max_input_tokens": 4096,
|
25 |
+
},
|
26 |
+
"GPT-4": {
|
27 |
+
"input_price_per_1M": 30.0,
|
28 |
+
"output_price_per_1M": 60.0,
|
29 |
+
"max_input_tokens": 8192,
|
30 |
+
},
|
31 |
+
}
|
32 |
+
|
33 |
+
def calculate_cost(model, input_tokens, output_tokens, num_requests):
|
34 |
+
if model not in models:
|
35 |
+
return "Invalid model selected", 0, 0, 0
|
36 |
+
|
37 |
+
if input_tokens > models[model]["max_input_tokens"]:
|
38 |
+
return f"Input tokens exceed the maximum limit for {model}", 0, 0, 0
|
39 |
+
|
40 |
+
input_cost = (input_tokens / 1_000_000) * models[model]["input_price_per_1M"] * num_requests
|
41 |
+
output_cost = (output_tokens / 1_000_000) * models[model]["output_price_per_1M"] * num_requests
|
42 |
+
total_cost = input_cost + output_cost
|
43 |
+
|
44 |
+
return f"${total_cost:.6f}", input_cost, output_cost, total_cost
|
45 |
+
|
46 |
+
def compare_models(input_tokens, output_tokens, num_requests):
|
47 |
+
results = []
|
48 |
+
for model in models:
|
49 |
+
total_cost_str, input_cost, output_cost, total_cost = calculate_cost(
|
50 |
+
model, input_tokens, output_tokens, num_requests
|
51 |
+
)
|
52 |
+
results.append(
|
53 |
+
{
|
54 |
+
"Model": model,
|
55 |
+
"Input Cost": f"${input_cost:.6f}",
|
56 |
+
"Output Cost": f"${output_cost:.6f}",
|
57 |
+
"Total Cost": total_cost_str,
|
58 |
+
"Max Input Tokens": models[model]["max_input_tokens"],
|
59 |
+
"Input Price (1M)": f"${models[model]['input_price_per_1M']:.2f}",
|
60 |
+
"Output Price (1M)": f"${models[model]['output_price_per_1M']:.2f}",
|
61 |
+
}
|
62 |
+
)
|
63 |
+
return pd.DataFrame(results)
|
64 |
+
|
65 |
+
def create_interface():
|
66 |
+
with gr.Blocks() as interface:
|
67 |
+
gr.Markdown("# LLM Price Comparison Tool")
|
68 |
+
with gr.Row():
|
69 |
+
input_tokens = gr.Number(label="Input Tokens", value=100)
|
70 |
+
output_tokens = gr.Number(label="Output Tokens", value=100)
|
71 |
+
num_requests = gr.Number(label="Number of Requests", value=1, step=1)
|
72 |
+
compare_btn = gr.Button("Compare Models")
|
73 |
+
output_table = gr.DataFrame(label="Comparison Results")
|
74 |
+
|
75 |
+
compare_btn.click(
|
76 |
+
fn=compare_models,
|
77 |
+
inputs=[input_tokens, output_tokens, num_requests],
|
78 |
+
outputs=output_table,
|
79 |
+
)
|
80 |
+
|
81 |
+
return interface
|
82 |
+
|
83 |
+
# Create and launch the interface
|
84 |
+
demo = create_interface()
|
85 |
+
|
86 |
+
# Hugging Face specific launch
|
87 |
+
if __name__ == "__main__":
|
88 |
+
demo.launch()
|
89 |
+
else:
|
90 |
+
demo.launch(share=True)
|