Spaces:
Sleeping
Sleeping
johannoriel
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,15 +2,10 @@ import gradio as gr
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
from transformers import AutoTokenizer, AutoModel
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
-
from
|
6 |
-
from langchain_community.
|
7 |
import fitz # PyMuPDF
|
8 |
-
import os
|
9 |
-
import hashlib
|
10 |
|
11 |
-
# Directory to store cached files
|
12 |
-
CACHE_DIR = "pdf_cache"
|
13 |
-
os.makedirs(CACHE_DIR, exist_ok=True)
|
14 |
|
15 |
def get_hf_models():
|
16 |
return ["Qwen/Qwen2.5-3B-Instruct", "HuggingFaceH4/zephyr-7b-beta", "mistralai/Mistral-7B-Instruct-v0.1"]
|
@@ -42,46 +37,35 @@ def no_rag(query, client):
|
|
42 |
response = client.text_generation(query, max_new_tokens=512)
|
43 |
return response
|
44 |
|
45 |
-
def
|
46 |
-
if file is None:
|
47 |
-
return None
|
48 |
-
file_hash = hashlib.md5(file.read()).hexdigest()
|
49 |
-
cached_path = os.path.join(CACHE_DIR, f"{file_hash}.pdf")
|
50 |
-
if not os.path.exists(cached_path):
|
51 |
-
with open(cached_path, "wb") as f:
|
52 |
-
file.seek(0)
|
53 |
-
f.write(file.read())
|
54 |
-
return cached_path
|
55 |
-
|
56 |
-
def get_cached_files():
|
57 |
-
return [f for f in os.listdir(CACHE_DIR) if f.endswith('.pdf')]
|
58 |
-
|
59 |
-
def process_query(query, pdf_file, cached_file, llm_choice, embedder_choice):
|
60 |
client = InferenceClient(llm_choice)
|
61 |
no_rag_response = no_rag(query, client)
|
62 |
|
63 |
-
if
|
64 |
-
pdf_path = cache_file(pdf_file)
|
65 |
-
elif cached_file:
|
66 |
-
pdf_path = os.path.join(CACHE_DIR, cached_file)
|
67 |
-
else:
|
68 |
return no_rag_response, "RAG non utilisé (pas de fichier PDF)", "RAG non utilisé (pas de fichier PDF)", "Pas de fichier PDF fourni", "Pas de contexte extrait"
|
69 |
|
70 |
full_text = extract_text_from_pdf(pdf_path)
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
classic_rag_response, classic_rag_context = classic_rag(query, pdf_path, client, embedder_choice)
|
73 |
|
74 |
return no_rag_response, manual_rag_response, classic_rag_response, full_text, classic_rag_context
|
75 |
|
|
|
76 |
iface = gr.Interface(
|
77 |
fn=process_query,
|
78 |
inputs=[
|
79 |
gr.Textbox(label="Votre question"),
|
80 |
gr.File(label="Chargez un nouveau PDF"),
|
81 |
-
gr.Dropdown(choices=
|
82 |
-
gr.Dropdown(choices=get_hf_models(), label="Choisissez le LLM", value="Qwen/Qwen2.5-3B-Instruct"),
|
83 |
gr.Dropdown(choices=["sentence-transformers/all-MiniLM-L6-v2", "nomic-ai/nomic-embed-text-v1.5"],
|
84 |
-
label="Choisissez l'Embedder", value="sentence-transformers/all-MiniLM-L6-v2")
|
|
|
85 |
],
|
86 |
outputs=[
|
87 |
gr.Textbox(label="Réponse sans RAG"),
|
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
from transformers import AutoTokenizer, AutoModel
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
6 |
+
from langchain_community.vectorstores import FAISS
|
7 |
import fitz # PyMuPDF
|
|
|
|
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
def get_hf_models():
|
11 |
return ["Qwen/Qwen2.5-3B-Instruct", "HuggingFaceH4/zephyr-7b-beta", "mistralai/Mistral-7B-Instruct-v0.1"]
|
|
|
37 |
response = client.text_generation(query, max_new_tokens=512)
|
38 |
return response
|
39 |
|
40 |
+
def process_query(query, pdf_path, llm_choice, embedder_choice, use_manual_rag):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
client = InferenceClient(llm_choice)
|
42 |
no_rag_response = no_rag(query, client)
|
43 |
|
44 |
+
if pdf_path is None:
|
|
|
|
|
|
|
|
|
45 |
return no_rag_response, "RAG non utilisé (pas de fichier PDF)", "RAG non utilisé (pas de fichier PDF)", "Pas de fichier PDF fourni", "Pas de contexte extrait"
|
46 |
|
47 |
full_text = extract_text_from_pdf(pdf_path)
|
48 |
+
|
49 |
+
# RAG manuel seulement si choisi
|
50 |
+
if use_manual_rag == "Oui":
|
51 |
+
manual_rag_response = manual_rag(query, full_text, client)
|
52 |
+
else:
|
53 |
+
manual_rag_response = "RAG manuel non utilisé"
|
54 |
+
|
55 |
classic_rag_response, classic_rag_context = classic_rag(query, pdf_path, client, embedder_choice)
|
56 |
|
57 |
return no_rag_response, manual_rag_response, classic_rag_response, full_text, classic_rag_context
|
58 |
|
59 |
+
|
60 |
iface = gr.Interface(
|
61 |
fn=process_query,
|
62 |
inputs=[
|
63 |
gr.Textbox(label="Votre question"),
|
64 |
gr.File(label="Chargez un nouveau PDF"),
|
65 |
+
gr.Dropdown(choices=get_hf_models(), label="Choisissez le LLM", value="HuggingFaceH4/zephyr-7b-beta"),
|
|
|
66 |
gr.Dropdown(choices=["sentence-transformers/all-MiniLM-L6-v2", "nomic-ai/nomic-embed-text-v1.5"],
|
67 |
+
label="Choisissez l'Embedder", value="sentence-transformers/all-MiniLM-L6-v2"),
|
68 |
+
gr.Dropdown(choices=["Oui", "Non"], label="Utiliser RAG manuel ?", value="Non") # Ajout de la combobox pour choisir RAG manuel
|
69 |
],
|
70 |
outputs=[
|
71 |
gr.Textbox(label="Réponse sans RAG"),
|