Spaces:
Running
Running
added more stuff for MMC
Browse files
app/app.R
CHANGED
@@ -355,8 +355,7 @@ ui <- shinydashboardPlus::dashboardPage(
|
|
355 |
"MCWNM: Maximum Correlation With Numerai Models staked at least 10 NMR",
|
356 |
"APCWNM: Average Pairwise Correlation With Numerai Models staked at least 10 NMR",
|
357 |
|
358 |
-
|
359 |
-
"Score Multipliers: 2.0 x MMCv2",
|
360 |
"Score Multipliers: 0.5 x CORRv2",
|
361 |
"Score Multipliers: 1.5 x CORRv2",
|
362 |
"Score Multipliers: 2.0 x CORRv2",
|
@@ -418,7 +417,7 @@ ui <- shinydashboardPlus::dashboardPage(
|
|
418 |
br()
|
419 |
|
420 |
),
|
421 |
-
|
422 |
|
423 |
tabPanel("KPI (C&T)",
|
424 |
|
@@ -553,7 +552,7 @@ ui <- shinydashboardPlus::dashboardPage(
|
|
553 |
- **1C0T**: 1xCORRv2 + 0xTC (Until the End of 2023)
|
554 |
- **2C0T**: 2xCORRv2 + 0xTC (Until the End of 2023)
|
555 |
- **2C1T**: 2xCORRv2 + 1xTC (Until the End of 2023)
|
556 |
-
- **
|
557 |
|
558 |
|
559 |
"),
|
@@ -603,6 +602,124 @@ ui <- shinydashboardPlus::dashboardPage(
|
|
603 |
shinycssloaders::withSpinner(plotlyOutput("plot_payout_individual")),
|
604 |
|
605 |
br()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
606 |
)
|
607 |
|
608 |
) # end of tabsetPanel
|
@@ -686,7 +803,7 @@ ui <- shinydashboardPlus::dashboardPage(
|
|
686 |
- #### **0.2.2** — Sped up chart rendering with `toWebGL()`
|
687 |
- #### **0.2.3** — Added new `MMC` - Ref: https://forum.numer.ai/t/changing-scoring-payouts-again-to-mmc-only/6794/27
|
688 |
- #### **0.2.4** — Added `MMC` to `Payout Sim`
|
689 |
-
- #### **0.2.5** — Added more
|
690 |
"),
|
691 |
|
692 |
br(),
|
@@ -938,7 +1055,7 @@ server <- function(input, output) {
|
|
938 |
d_payout[, payout_2C0T := (2*corrV2_final) * stake * pay_ftr]
|
939 |
d_payout[, payout_2C1T := (2*corrV2_final + tc_final) * stake * pay_ftr]
|
940 |
d_payout[, payout_1C3T := (corrV2_final + 3*tc_final) * stake * pay_ftr]
|
941 |
-
d_payout[,
|
942 |
|
943 |
# Summarise
|
944 |
d_payout_smry <-
|
@@ -952,13 +1069,13 @@ server <- function(input, output) {
|
|
952 |
sum_pay_2C0T = sum(payout_2C0T, na.rm = T),
|
953 |
sum_pay_2C1T = sum(payout_2C1T, na.rm = T),
|
954 |
sum_pay_1C3T = sum(payout_1C3T, na.rm = T),
|
955 |
-
|
956 |
|
957 |
shp_pay_1C0T = mean(payout_1C0T, na.rm = T) / sd(payout_1C0T, na.rm = T),
|
958 |
shp_pay_2C0T = mean(payout_2C0T, na.rm = T) / sd(payout_2C0T, na.rm = T),
|
959 |
shp_pay_2C1T = mean(payout_2C1T, na.rm = T) / sd(payout_2C1T, na.rm = T),
|
960 |
shp_pay_1C3T = mean(payout_1C3T, na.rm = T) / sd(payout_1C3T, na.rm = T),
|
961 |
-
|
962 |
|
963 |
) |>
|
964 |
as.data.table()
|
@@ -997,7 +1114,7 @@ server <- function(input, output) {
|
|
997 |
d_payout[, payout_2C0T := (2*corrV2_final) * stake * pay_ftr]
|
998 |
d_payout[, payout_2C1T := (2*corrV2_final + tc_final) * stake * pay_ftr]
|
999 |
d_payout[, payout_1C3T := (corrV2_final + 3*tc_final) * stake * pay_ftr]
|
1000 |
-
d_payout[,
|
1001 |
|
1002 |
# Summarise
|
1003 |
d_payout_smry <-
|
@@ -1009,13 +1126,13 @@ server <- function(input, output) {
|
|
1009 |
sum_pay_2C0T = sum(payout_2C0T, na.rm = T),
|
1010 |
sum_pay_2C1T = sum(payout_2C1T, na.rm = T),
|
1011 |
sum_pay_1C3T = sum(payout_1C3T, na.rm = T),
|
1012 |
-
|
1013 |
|
1014 |
shp_pay_1C0T = mean(payout_1C0T, na.rm = T) / sd(payout_1C0T, na.rm = T),
|
1015 |
shp_pay_2C0T = mean(payout_2C0T, na.rm = T) / sd(payout_2C0T, na.rm = T),
|
1016 |
shp_pay_2C1T = mean(payout_2C1T, na.rm = T) / sd(payout_2C1T, na.rm = T),
|
1017 |
shp_pay_1C3T = mean(payout_1C3T, na.rm = T) / sd(payout_1C3T, na.rm = T),
|
1018 |
-
|
1019 |
|
1020 |
) |>
|
1021 |
as.data.table()
|
@@ -1086,7 +1203,7 @@ server <- function(input, output) {
|
|
1086 |
if (input$kpi_choice == "APCWNM: Average Pairwise Correlation With Numerai Models staked at least 10 NMR") d_pref[, KPI := apcwnm]
|
1087 |
|
1088 |
# Calculate Score Multiplies
|
1089 |
-
if (input$kpi_choice == "Score Multipliers: 2.0 x MMCv2") d_pref[, KPI := 2.0 * mmc]
|
1090 |
if (input$kpi_choice == "Score Multipliers: 0.5 x CORRv2") d_pref[, KPI := 0.5 * corrV2]
|
1091 |
if (input$kpi_choice == "Score Multipliers: 1.5 x CORRv2") d_pref[, KPI := 1.5 * corrV2]
|
1092 |
if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2") d_pref[, KPI := 2.0 * corrV2]
|
@@ -1576,7 +1693,7 @@ server <- function(input, output) {
|
|
1576 |
if (input$kpi_choice == "MCWNM: Maximum Correlation With Numerai Models staked at least 10 NMR") y_label <- "MCWNM"
|
1577 |
if (input$kpi_choice == "APCWNM: Average Pairwise Correlation With Numerai Models staked at least 10 NMR") y_label <- "APCWNM"
|
1578 |
|
1579 |
-
if (input$kpi_choice == "Score Multipliers: 2.0 x MMCv2") y_label <- "2.0 x MMCv2"
|
1580 |
if (input$kpi_choice == "Score Multipliers: 0.5 x CORRv2") y_label <- "0.5 x CORRv2"
|
1581 |
if (input$kpi_choice == "Score Multipliers: 1.5 x CORRv2") y_label <- "1.5 x CORRv2"
|
1582 |
if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2") y_label <- "2.0 x CORRv2"
|
@@ -1773,18 +1890,18 @@ server <- function(input, output) {
|
|
1773 |
|
1774 |
# Reformat individual columns
|
1775 |
formatRound(columns = c("sum_pay_1C0T", "sum_pay_2C0T", "sum_pay_2C1T", "sum_pay_1C3T",
|
1776 |
-
"
|
1777 |
"shp_pay_1C0T", "shp_pay_2C0T", "shp_pay_2C1T", "shp_pay_1C3T"),
|
1778 |
digits = 2) |>
|
1779 |
|
1780 |
formatStyle(columns = c("sum_pay_1C0T", "sum_pay_2C0T", "sum_pay_2C1T", "sum_pay_1C3T",
|
1781 |
-
"
|
1782 |
"shp_pay_1C0T", "shp_pay_2C0T", "shp_pay_2C1T", "shp_pay_1C3T"),
|
1783 |
color = styleInterval(cuts = c(-1e-15, 1e-15),
|
1784 |
values = c("#D24141", "#D1D1D1", "#00A800"))) |>
|
1785 |
|
1786 |
formatStyle(columns = c("model",
|
1787 |
-
"
|
1788 |
# "sum_pay_2C1T", "sum_pay_1C3T",
|
1789 |
# "shp_pay_2C1T", "shp_pay_1C3T"
|
1790 |
), fontWeight = "bold")
|
@@ -1816,17 +1933,17 @@ server <- function(input, output) {
|
|
1816 |
|
1817 |
# Reformat individual columns
|
1818 |
formatRound(columns = c("sum_pay_1C0T", "sum_pay_2C0T", "sum_pay_2C1T", "sum_pay_1C3T",
|
1819 |
-
"
|
1820 |
"shp_pay_1C0T", "shp_pay_2C0T", "shp_pay_2C1T", "shp_pay_1C3T"),
|
1821 |
digits = 2) |>
|
1822 |
|
1823 |
formatStyle(columns = c("sum_pay_1C0T", "sum_pay_2C0T", "sum_pay_2C1T", "sum_pay_1C3T",
|
1824 |
-
"
|
1825 |
"shp_pay_1C0T", "shp_pay_2C0T", "shp_pay_2C1T", "shp_pay_1C3T"),
|
1826 |
color = styleInterval(cuts = c(-1e-15, 1e-15),
|
1827 |
values = c("#D24141", "#D1D1D1", "#00A800"))) |>
|
1828 |
|
1829 |
-
formatStyle(columns = c("
|
1830 |
fontWeight = "bold")
|
1831 |
|
1832 |
})
|
|
|
355 |
"MCWNM: Maximum Correlation With Numerai Models staked at least 10 NMR",
|
356 |
"APCWNM: Average Pairwise Correlation With Numerai Models staked at least 10 NMR",
|
357 |
|
358 |
+
"Score Multipliers: 0.5 x CORRv2 + 2.0 x MMCv2",
|
|
|
359 |
"Score Multipliers: 0.5 x CORRv2",
|
360 |
"Score Multipliers: 1.5 x CORRv2",
|
361 |
"Score Multipliers: 2.0 x CORRv2",
|
|
|
417 |
br()
|
418 |
|
419 |
),
|
420 |
+
|
421 |
|
422 |
tabPanel("KPI (C&T)",
|
423 |
|
|
|
552 |
- **1C0T**: 1xCORRv2 + 0xTC (Until the End of 2023)
|
553 |
- **2C0T**: 2xCORRv2 + 0xTC (Until the End of 2023)
|
554 |
- **2C1T**: 2xCORRv2 + 1xTC (Until the End of 2023)
|
555 |
+
- **05C2M**: 0.5xCORRv2 + 2xMMCv2 (**New Payout Mode**)
|
556 |
|
557 |
|
558 |
"),
|
|
|
602 |
shinycssloaders::withSpinner(plotlyOutput("plot_payout_individual")),
|
603 |
|
604 |
br()
|
605 |
+
),
|
606 |
+
|
607 |
+
|
608 |
+
tabPanel("KPI (x~y)",
|
609 |
+
|
610 |
+
br(),
|
611 |
+
|
612 |
+
h3("**Coming Soon!**"),
|
613 |
+
|
614 |
+
# h3(strong(textOutput(outputId = "text_performance_models"))),
|
615 |
+
|
616 |
+
# h4(textOutput(outputId = "text_performance_models_note")),
|
617 |
+
|
618 |
+
br(),
|
619 |
+
|
620 |
+
# Controls ============================================================================
|
621 |
+
|
622 |
+
fluidRow(
|
623 |
+
|
624 |
+
column(6,
|
625 |
+
markdown("#### **X-Axis:**"),
|
626 |
+
pickerInput(
|
627 |
+
inputId = "kpi_xy_x",
|
628 |
+
choices = c("CORRv2: CORRelation with target cyrus_v4_20",
|
629 |
+
"MMCv2: The Latest and the Greatest MMC",
|
630 |
+
"TC: True Contribtuion to the hedge fund's returns",
|
631 |
+
"FNCv3: Feature Neutral Correlation with respect to the FNCv3 features",
|
632 |
+
"Percentile: MMCv2",
|
633 |
+
"Percentile: CORRv2",
|
634 |
+
"Percentile: TC",
|
635 |
+
"Percentile: FNCv3",
|
636 |
+
"CWMM: Correlation With the Meta Model",
|
637 |
+
"MCWNM: Maximum Correlation With Numerai Models staked at least 10 NMR",
|
638 |
+
"APCWNM: Average Pairwise Correlation With Numerai Models staked at least 10 NMR"),
|
639 |
+
|
640 |
+
multiple = FALSE,
|
641 |
+
width = "95%")
|
642 |
+
),
|
643 |
+
|
644 |
+
column(6,
|
645 |
+
markdown("#### **Y-Axis:**"),
|
646 |
+
pickerInput(
|
647 |
+
inputId = "kpi_xy_y",
|
648 |
+
choices = c("MMCv2: The Latest and the Greatest MMC",
|
649 |
+
"CORRv2: CORRelation with target cyrus_v4_20",
|
650 |
+
"TC: True Contribtuion to the hedge fund's returns",
|
651 |
+
"FNCv3: Feature Neutral Correlation with respect to the FNCv3 features",
|
652 |
+
"Percentile: MMCv2",
|
653 |
+
"Percentile: CORRv2",
|
654 |
+
"Percentile: TC",
|
655 |
+
"Percentile: FNCv3",
|
656 |
+
"CWMM: Correlation With the Meta Model",
|
657 |
+
"MCWNM: Maximum Correlation With Numerai Models staked at least 10 NMR",
|
658 |
+
"APCWNM: Average Pairwise Correlation With Numerai Models staked at least 10 NMR"),
|
659 |
+
|
660 |
+
multiple = FALSE,
|
661 |
+
width = "95%")
|
662 |
+
),
|
663 |
+
|
664 |
+
column(2,
|
665 |
+
markdown("#### **Control 1**"),
|
666 |
+
switchInput(
|
667 |
+
inputId = "kpi_xy_ctrl_1",
|
668 |
+
onLabel = "Yes",
|
669 |
+
offLabel = "No",
|
670 |
+
value = TRUE)
|
671 |
+
),
|
672 |
+
|
673 |
+
column(2,
|
674 |
+
markdown("#### **Control 2**"),
|
675 |
+
switchInput(
|
676 |
+
inputId = "kpi_xy_ctrl_2",
|
677 |
+
onLabel = "Yes",
|
678 |
+
offLabel = "No",
|
679 |
+
value = FALSE)
|
680 |
+
),
|
681 |
+
|
682 |
+
column(2,
|
683 |
+
markdown("#### **Control 3**"),
|
684 |
+
switchInput(
|
685 |
+
inputId = "kpi_xy_ctrl_3",
|
686 |
+
onLabel = "Yes",
|
687 |
+
offLabel = "No",
|
688 |
+
value = FALSE)
|
689 |
+
),
|
690 |
+
|
691 |
+
column(2,
|
692 |
+
markdown("#### **Control 4**"),
|
693 |
+
switchInput(
|
694 |
+
inputId = "kpi_xy_ctrl_4",
|
695 |
+
onLabel = "Yes",
|
696 |
+
offLabel = "No",
|
697 |
+
value = FALSE)
|
698 |
+
),
|
699 |
+
|
700 |
+
column(2,
|
701 |
+
markdown("#### **Control 5**"),
|
702 |
+
switchInput(
|
703 |
+
inputId = "kpi_xy_ctrl_5",
|
704 |
+
onLabel = "Yes",
|
705 |
+
offLabel = "No",
|
706 |
+
value = FALSE)
|
707 |
+
),
|
708 |
+
|
709 |
+
column(2,
|
710 |
+
markdown("#### **Control 6**"),
|
711 |
+
switchInput(
|
712 |
+
inputId = "kpi_xy_ctrl_6",
|
713 |
+
onLabel = "Yes",
|
714 |
+
offLabel = "No",
|
715 |
+
value = FALSE)
|
716 |
+
)
|
717 |
+
|
718 |
+
|
719 |
+
),
|
720 |
+
|
721 |
+
br()
|
722 |
+
|
723 |
)
|
724 |
|
725 |
) # end of tabsetPanel
|
|
|
803 |
- #### **0.2.2** — Sped up chart rendering with `toWebGL()`
|
804 |
- #### **0.2.3** — Added new `MMC` - Ref: https://forum.numer.ai/t/changing-scoring-payouts-again-to-mmc-only/6794/27
|
805 |
- #### **0.2.4** — Added `MMC` to `Payout Sim`
|
806 |
+
- #### **0.2.5** — Added more features related to MMC
|
807 |
"),
|
808 |
|
809 |
br(),
|
|
|
1055 |
d_payout[, payout_2C0T := (2*corrV2_final) * stake * pay_ftr]
|
1056 |
d_payout[, payout_2C1T := (2*corrV2_final + tc_final) * stake * pay_ftr]
|
1057 |
d_payout[, payout_1C3T := (corrV2_final + 3*tc_final) * stake * pay_ftr]
|
1058 |
+
d_payout[, payout_05C2M := (0.5*corrV2_final + 2*mmc) * stake * pay_ftr]
|
1059 |
|
1060 |
# Summarise
|
1061 |
d_payout_smry <-
|
|
|
1069 |
sum_pay_2C0T = sum(payout_2C0T, na.rm = T),
|
1070 |
sum_pay_2C1T = sum(payout_2C1T, na.rm = T),
|
1071 |
sum_pay_1C3T = sum(payout_1C3T, na.rm = T),
|
1072 |
+
sum_pay_05C2M = sum(payout_05C2M, na.rm = T),
|
1073 |
|
1074 |
shp_pay_1C0T = mean(payout_1C0T, na.rm = T) / sd(payout_1C0T, na.rm = T),
|
1075 |
shp_pay_2C0T = mean(payout_2C0T, na.rm = T) / sd(payout_2C0T, na.rm = T),
|
1076 |
shp_pay_2C1T = mean(payout_2C1T, na.rm = T) / sd(payout_2C1T, na.rm = T),
|
1077 |
shp_pay_1C3T = mean(payout_1C3T, na.rm = T) / sd(payout_1C3T, na.rm = T),
|
1078 |
+
shp_pay_05C2M = mean(payout_05C2M, na.rm = T) / sd(payout_05C2M, na.rm = T)
|
1079 |
|
1080 |
) |>
|
1081 |
as.data.table()
|
|
|
1114 |
d_payout[, payout_2C0T := (2*corrV2_final) * stake * pay_ftr]
|
1115 |
d_payout[, payout_2C1T := (2*corrV2_final + tc_final) * stake * pay_ftr]
|
1116 |
d_payout[, payout_1C3T := (corrV2_final + 3*tc_final) * stake * pay_ftr]
|
1117 |
+
d_payout[, payout_05C2M := (0.5*corrV2 + 2*mmc) * stake * pay_ftr]
|
1118 |
|
1119 |
# Summarise
|
1120 |
d_payout_smry <-
|
|
|
1126 |
sum_pay_2C0T = sum(payout_2C0T, na.rm = T),
|
1127 |
sum_pay_2C1T = sum(payout_2C1T, na.rm = T),
|
1128 |
sum_pay_1C3T = sum(payout_1C3T, na.rm = T),
|
1129 |
+
sum_pay_05C2M = sum(payout_05C2M, na.rm = T),
|
1130 |
|
1131 |
shp_pay_1C0T = mean(payout_1C0T, na.rm = T) / sd(payout_1C0T, na.rm = T),
|
1132 |
shp_pay_2C0T = mean(payout_2C0T, na.rm = T) / sd(payout_2C0T, na.rm = T),
|
1133 |
shp_pay_2C1T = mean(payout_2C1T, na.rm = T) / sd(payout_2C1T, na.rm = T),
|
1134 |
shp_pay_1C3T = mean(payout_1C3T, na.rm = T) / sd(payout_1C3T, na.rm = T),
|
1135 |
+
shp_pay_05C2M = mean(payout_05C2M, na.rm = T) / sd(payout_05C2M, na.rm = T)
|
1136 |
|
1137 |
) |>
|
1138 |
as.data.table()
|
|
|
1203 |
if (input$kpi_choice == "APCWNM: Average Pairwise Correlation With Numerai Models staked at least 10 NMR") d_pref[, KPI := apcwnm]
|
1204 |
|
1205 |
# Calculate Score Multiplies
|
1206 |
+
if (input$kpi_choice == "Score Multipliers: 0.5 x CORRv2 + 2.0 x MMCv2") d_pref[, KPI := 0.5 * corrV2 + 2.0 * mmc]
|
1207 |
if (input$kpi_choice == "Score Multipliers: 0.5 x CORRv2") d_pref[, KPI := 0.5 * corrV2]
|
1208 |
if (input$kpi_choice == "Score Multipliers: 1.5 x CORRv2") d_pref[, KPI := 1.5 * corrV2]
|
1209 |
if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2") d_pref[, KPI := 2.0 * corrV2]
|
|
|
1693 |
if (input$kpi_choice == "MCWNM: Maximum Correlation With Numerai Models staked at least 10 NMR") y_label <- "MCWNM"
|
1694 |
if (input$kpi_choice == "APCWNM: Average Pairwise Correlation With Numerai Models staked at least 10 NMR") y_label <- "APCWNM"
|
1695 |
|
1696 |
+
if (input$kpi_choice == "Score Multipliers: 0.5 x CORRv2 + 2.0 x MMCv2") y_label <- "0.5 x CORRv2 + 2.0 x MMCv2"
|
1697 |
if (input$kpi_choice == "Score Multipliers: 0.5 x CORRv2") y_label <- "0.5 x CORRv2"
|
1698 |
if (input$kpi_choice == "Score Multipliers: 1.5 x CORRv2") y_label <- "1.5 x CORRv2"
|
1699 |
if (input$kpi_choice == "Score Multipliers: 2.0 x CORRv2") y_label <- "2.0 x CORRv2"
|
|
|
1890 |
|
1891 |
# Reformat individual columns
|
1892 |
formatRound(columns = c("sum_pay_1C0T", "sum_pay_2C0T", "sum_pay_2C1T", "sum_pay_1C3T",
|
1893 |
+
"sum_pay_05C2M", "shp_pay_05C2M",
|
1894 |
"shp_pay_1C0T", "shp_pay_2C0T", "shp_pay_2C1T", "shp_pay_1C3T"),
|
1895 |
digits = 2) |>
|
1896 |
|
1897 |
formatStyle(columns = c("sum_pay_1C0T", "sum_pay_2C0T", "sum_pay_2C1T", "sum_pay_1C3T",
|
1898 |
+
"sum_pay_05C2M", "shp_pay_05C2M",
|
1899 |
"shp_pay_1C0T", "shp_pay_2C0T", "shp_pay_2C1T", "shp_pay_1C3T"),
|
1900 |
color = styleInterval(cuts = c(-1e-15, 1e-15),
|
1901 |
values = c("#D24141", "#D1D1D1", "#00A800"))) |>
|
1902 |
|
1903 |
formatStyle(columns = c("model",
|
1904 |
+
"sum_pay_05C2M", "shp_pay_05C2M"
|
1905 |
# "sum_pay_2C1T", "sum_pay_1C3T",
|
1906 |
# "shp_pay_2C1T", "shp_pay_1C3T"
|
1907 |
), fontWeight = "bold")
|
|
|
1933 |
|
1934 |
# Reformat individual columns
|
1935 |
formatRound(columns = c("sum_pay_1C0T", "sum_pay_2C0T", "sum_pay_2C1T", "sum_pay_1C3T",
|
1936 |
+
"sum_pay_05C2M", "shp_pay_05C2M",
|
1937 |
"shp_pay_1C0T", "shp_pay_2C0T", "shp_pay_2C1T", "shp_pay_1C3T"),
|
1938 |
digits = 2) |>
|
1939 |
|
1940 |
formatStyle(columns = c("sum_pay_1C0T", "sum_pay_2C0T", "sum_pay_2C1T", "sum_pay_1C3T",
|
1941 |
+
"sum_pay_05C2M", "shp_pay_05C2M",
|
1942 |
"shp_pay_1C0T", "shp_pay_2C0T", "shp_pay_2C1T", "shp_pay_1C3T"),
|
1943 |
color = styleInterval(cuts = c(-1e-15, 1e-15),
|
1944 |
values = c("#D24141", "#D1D1D1", "#00A800"))) |>
|
1945 |
|
1946 |
+
formatStyle(columns = c("sum_pay_05C2M", "shp_pay_05C2M"),
|
1947 |
fontWeight = "bold")
|
1948 |
|
1949 |
})
|