Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline | |
class Emotionclass: | |
def __init__(self, model: str): | |
self.model = AutoModelForSequenceClassification.from_pretrained(model) | |
self.tokenizer = AutoTokenizer.from_pretrained(model) | |
self.pipeline = pipeline( | |
"text-classification", | |
model=self.model, | |
tokenizer=self.tokenizer, | |
return_all_scores=True, | |
) | |
def predict(self, input: str): | |
output = self.pipeline(input)[0] | |
result = { | |
"sad": output[0]["score"], | |
"joy": output[1]["score"], | |
"love": output[2]["score"], | |
"anger": output[3]["score"], | |
"fear": output[4]["score"], | |
"surprise": output[5]["score"], | |
} | |
return result | |
def main(): | |
model = Emotionclass("bhadresh-savani/bert-base-uncased-emotion") | |
iface = gr.Interface( | |
fn=model.predict, | |
inputs=gr.inputs.Textbox( | |
lines=3, | |
placeholder="type here", | |
label="Input", | |
), | |
outputs="label", | |
title="Sentiment Classification", | |
) | |
iface.launch() | |
if __name__ == "__main__": | |
main() |