StreamlitGrammarCorrectorStyler / GrammarTokenize.py
jmcob's picture
Create new file
2fbcc76
import uvicorn
from fastapi import File
from fastapi import FastAPI
from fastapi import UploadFile
import torch
import os
import sys
import glob
import transformers
from transformers import AutoTokenizer
from transformers import AutoModelForSeq2SeqLM
print("Loading models...")
app = FastAPI()
device = "cpu"
correction_model_tag = "prithivida/grammar_error_correcter_v1"
correction_tokenizer = AutoTokenizer.from_pretrained(correction_model_tag)
correction_model = AutoModelForSeq2SeqLM.from_pretrained(correction_model_tag)
def set_seed(seed):
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
print("Models loaded !")
@app.get("/")
def read_root():
return {"Gramformer !"}
@app.get("/{correct}")
def get_correction(input_sentence):
set_seed(1212)
scored_corrected_sentence = correct(input_sentence)
return {"scored_corrected_sentence": scored_corrected_sentence}
def correct(input_sentence, max_candidates=1):
correction_prefix = "gec: "
input_sentence = correction_prefix + input_sentence
input_ids = correction_tokenizer.encode(input_sentence, return_tensors='pt')
input_ids = input_ids.to(device)
preds = correction_model.generate(
input_ids,
do_sample=True,
max_length=128,
top_k=50,
top_p=0.95,
early_stopping=True,
num_return_sequences=max_candidates)
corrected = set()
for pred in preds:
corrected.add(correction_tokenizer.decode(pred, skip_special_tokens=True).strip())
corrected = list(corrected)
return (corrected[0], 0) #Corrected Sentence, Dummy score