Spaces:
Runtime error
Runtime error
File size: 6,436 Bytes
018f43b 7d70002 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import streamlit as st
from multiprocessing import Process
from annotated_text import annotated_text
from bs4 import BeautifulSoup
import pandas as pd
import torch
import math
import re
import json
import requests
import spacy
import errant
import time
import os
def start_server():
os.system("python3 -m spacy download en_core_web_sm")
os.system("uvicorn GrammarTokenize:app --port 8080 --host 0.0.0.0 --workers 2")
def load_models():
if not is_port_in_use(8080):
with st.spinner(text="Loading models, please wait..."):
proc = Process(target=start_server, args=(), daemon=True)
proc.start()
while not is_port_in_use(8080):
time.sleep(1)
st.success("Model server started.")
else:
st.success("Model server already running...")
st.session_state['models_loaded'] = True
def is_port_in_use(port):
import socket
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
return s.connect_ex(('0.0.0.0', port)) == 0
if 'models_loaded' not in st.session_state:
st.session_state['models_loaded'] = False
def show_highlights(input_text, corrected_sentence):
try:
strikeout = lambda x: '\u0336'.join(x) + '\u0336'
highlight_text = highlight(input_text, corrected_sentence)
color_map = {'d':'#faa', 'a':'#afa', 'c':'#fea'}
tokens = re.split(r'(<[dac]\s.*?<\/[dac]>)', highlight_text)
annotations = []
for token in tokens:
soup = BeautifulSoup(token, 'html.parser')
tags = soup.findAll()
if tags:
_tag = tags[0].name
_type = tags[0]['type']
_text = tags[0]['edit']
_color = color_map[_tag]
if _tag == 'd':
_text = strikeout(tags[0].text)
annotations.append((_text, _type, _color))
else:
annotations.append(token)
annotated_text(*annotations)
except Exception as e:
st.error('Some error occured!' + str(e))
st.stop()
def show_edits(input_text, corrected_sentence):
try:
edits = get_edits(input_text, corrected_sentence)
df = pd.DataFrame(edits, columns=['type','original word', 'original start', 'original end', 'correct word', 'correct start', 'correct end'])
df = df.set_index('type')
st.table(df)
except Exception as e:
st.error('Some error occured!')
st.stop()
def highlight(orig, cor):
edits = _get_edits(orig, cor)
orig_tokens = orig.split()
ignore_indexes = []
for edit in edits:
edit_type = edit[0]
edit_str_start = edit[1]
edit_spos = edit[2]
edit_epos = edit[3]
edit_str_end = edit[4]
# if no_of_tokens(edit_str_start) > 1 ==> excluding the first token, mark all other tokens for deletion
for i in range(edit_spos+1, edit_epos):
ignore_indexes.append(i)
if edit_str_start == "":
if edit_spos - 1 >= 0:
new_edit_str = orig_tokens[edit_spos - 1]
edit_spos -= 1
else:
new_edit_str = orig_tokens[edit_spos + 1]
edit_spos += 1
if edit_type == "PUNCT":
st = "<a type='" + edit_type + "' edit='" + \
edit_str_end + "'>" + new_edit_str + "</a>"
else:
st = "<a type='" + edit_type + "' edit='" + new_edit_str + \
" " + edit_str_end + "'>" + new_edit_str + "</a>"
orig_tokens[edit_spos] = st
elif edit_str_end == "":
st = "<d type='" + edit_type + "' edit=''>" + edit_str_start + "</d>"
orig_tokens[edit_spos] = st
else:
st = "<c type='" + edit_type + "' edit='" + \
edit_str_end + "'>" + edit_str_start + "</c>"
orig_tokens[edit_spos] = st
for i in sorted(ignore_indexes, reverse=True):
del(orig_tokens[i])
return(" ".join(orig_tokens))
def _get_edits(orig, cor):
orig = annotator.parse(orig)
cor = annotator.parse(cor)
alignment = annotator.align(orig, cor)
edits = annotator.merge(alignment)
if len(edits) == 0:
return []
edit_annotations = []
for e in edits:
e = annotator.classify(e)
edit_annotations.append((e.type[2:], e.o_str, e.o_start, e.o_end, e.c_str, e.c_start, e.c_end))
if len(edit_annotations) > 0:
return edit_annotations
else:
return []
def get_edits(orig, cor):
return _get_edits(orig, cor)
def get_correction(input_text):
correct_request = "http://0.0.0.0:8080/correct?input_sentence="+input_text
correct_response = requests.get(correct_request)
correct_json = json.loads(correct_response.text)
scored_corrected_sentence = correct_json["scored_corrected_sentence"]
corrected_sentence, score = scored_corrected_sentence
st.markdown(f'##### Corrected text:')
st.write('')
st.success(corrected_sentence)
exp1 = st.expander(label='Show highlights', expanded=True)
with exp1:
show_highlights(input_text, corrected_sentence)
exp2 = st.expander(label='Show edits')
with exp2:
show_edits(input_text, corrected_sentence)
if __name__ == "__main__":
st.title('Grammar Styler')
st.subheader('Grammar and sentence structure restyler')
examples = [
"I looked at the med cabinet and meds are out. Can you order me more?",
"Been spendin my whole life jus to her dat song",
"whatdjya think about dat?",
"Lets git sum holesome waves and go surfin"
]
if not st.session_state['models_loaded']:
load_models()
import en_core_web_sm
nlp = en_core_web_sm.load()
annotator = errant.load('en', nlp)
st.markdown(f'##### Try it now:')
input_text = st.selectbox(
label="Choose an example",
options=examples
)
st.write("(or)")
input_text = st.text_input(
label="Bring your own sentence",
value=input_text
)
if input_text.strip():
get_correction(input_text) |