smoltts_v0 / app.py
jkeisling's picture
Turn off ZeroGPU for now until I fix it later
9b1745e
raw
history blame
4.23 kB
import gradio as gr
from fish_speech import LM
import re
from rustymimi import Tokenizer
from huggingface_hub import snapshot_download, hf_hub_download
import numpy as np
import spaces
# Voice mapping dictionary:
# US voices
# heart (default) -> <|speaker:0|>
# bella -> <|speaker:1|>
# nova -> <|speaker:2|>
# sky -> <|speaker:3|>
# sarah -> <|speaker:4|>
# michael -> <|speaker:5|>
# fenrir -> <|speaker:6|>
# liam -> <|speaker:7|>
# British voices
# emma -> <|speaker:8|>
# isabella -> <|speaker:9|>
# fable -> <|speaker:10|>
voice_mapping = {
"Heart (US)": "<|speaker:0|>",
"Bella (US)": "<|speaker:1|>",
"Nova (US)": "<|speaker:2|>",
"Sky (US)": "<|speaker:3|>",
"Sarah (US)": "<|speaker:4|>",
"Michael (US)": "<|speaker:5|>",
"Fenrir (US)": "<|speaker:6|>",
"Liam (US)": "<|speaker:7|>",
"Emma (UK)": "<|speaker:8|>",
"Isabella (UK)": "<|speaker:9|>",
"Fable (UK)": "<|speaker:10|>",
}
# Initialize models
print("Downloading and initializing models...")
def get_mimi_path():
"""Get Mimi tokenizer weights from Hugging Face."""
repo_id = "kyutai/moshiko-mlx-bf16"
filename = "tokenizer-e351c8d8-checkpoint125.safetensors"
return hf_hub_download(repo_id, filename)
dir = snapshot_download("jkeisling/smoltts_v0")
mimi_path = get_mimi_path()
lm = LM(dir, dtype="bf16", device="cuda", version="dual_ar")
codec = Tokenizer(mimi_path)
# Naively split text into sentences
def split_sentences(text):
sentences = re.split(r"(?<=[?.!])\s+", text)
return [s.strip() for s in sentences if s.strip()]
@spaces.GPU
def synthesize_speech(text, temperature, top_p, voice):
"""Generate speech from text using Fish Speech, processing each sentence separately."""
sysprompt = voice_mapping.get(voice, "<|speaker:0|>")
sentences = split_sentences(text)
pcm_list = []
for sentence in sentences:
# Generate audio for each sentence individually
generated = lm([sentence], temp=temperature, top_p=top_p, sysprompt=sysprompt)
pcm = codec.decode(generated)
pcm_list.append(pcm.flatten())
# Concatenate all PCM arrays into one
final_pcm = np.concatenate(pcm_list)
return (24_000, final_pcm)
# Create the Gradio interface
with gr.Blocks(
theme=gr.themes.Default(
font=[gr.themes.GoogleFont("IBM Plex Sans"), "Arial", "sans-serif"],
font_mono=gr.themes.GoogleFont("IBM Plex Mono"),
primary_hue=gr.themes.colors.blue,
secondary_hue=gr.themes.colors.slate,
)
) as demo:
with gr.Row():
gr.Markdown("""
# SmolTTS v0
SmolTTS v0 is an autoregressive 150M parameter character-level text-to-speech model pretrained with an [RQTransformer backbone](https://arxiv.org/abs/2203.01941) and paired with a pretrained [Mimi codec](https://arxiv.org/abs/2410.00037) vocoder. Designed for US and UK English, it was trained entirely on synthetic speech data generated using [Kokoro TTS](https://huggingface.co./hexgrad/Kokoro-82M). SmolTTS is Apache 2.0 licensed - enjoy!
""")
with gr.Row():
with gr.Column():
input_text = gr.Textbox(
label="Input Text", placeholder="Enter text to synthesize...", lines=3
)
voice_dropdown = gr.Dropdown(
label="Voice",
choices=list(voice_mapping.keys()),
value="Heart (US)",
info="Select a voice (sysprompt mapping)",
)
with gr.Row():
temperature = gr.Slider(
minimum=0.0, maximum=1.0, value=0.1, step=0.1, label="Temperature"
)
top_p = gr.Slider(
minimum=0.0, maximum=1.0, value=0.85, step=0.01, label="Top P"
)
with gr.Column():
audio_output = gr.Audio(label="Generated Speech", type="numpy")
generate_btn = gr.Button("Generate Speech", variant="primary")
generate_btn.click(
fn=synthesize_speech,
inputs=[input_text, temperature, top_p, voice_dropdown],
outputs=[audio_output],
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", share=False)