import os import cv2 import gradio as gr from PIL import Image import torch model_path = 'experiments/pretrained_models/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth' if os.path.exists(model_path): print(f'loading model from {model_path}') else: os.makedirs(os.path.dirname(model_path), exist_ok=True) url = 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/{}'.format(os.path.basename(model_path)) r = requests.get(url, allow_redirects=True) print(f'downloading model {model_path}') open(model_path, 'wb').write(r.content) os.makedirs("test", exist_ok=True) def inference(img): cv2.imwrite("test/1.png", cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) # basewidth = 256 # wpercent = (basewidth/float(img.size[0])) # hsize = int((float(img.size[1])*float(wpercent))) # img = img.resize((basewidth,hsize), Image.ANTIALIAS) #img.save("test/1.jpg", "JPEG") os.system('python main_test_swin2sr.py --task real_sr --model_path experiments/pretrained_models/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth --folder_lq test --scale 4') return 'results/swin2sr_real_sr_x4/1_Swin2SR.png' title = "Swin2SR" description = "Gradio demo for Swin2SR." article = "

Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration> | Github Repo

" examples=[['butterflyx4.png']] gr.Interface( inference, "image", "image", title=title, description=description, article=article, examples=examples, ).launch(enable_queue=True, share=True)