dims commited on
Commit
21a5db1
1 Parent(s): 2d76a32

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -345
app.py CHANGED
@@ -1,348 +1,7 @@
1
- import argparse
2
- import cv2
3
- import glob
4
- import numpy as np
5
  import gradio as gr
6
- from collections import OrderedDict
7
- import os
8
- import torch
9
- import requests
10
- from PIL import Image
11
- from models.network_swin2sr import Swin2SR as net
12
- from utils import util_calculate_psnr_ssim as util
13
 
 
 
14
 
15
- def setup_model(args):
16
-
17
- model = define_model(args)
18
- model.eval()
19
- model = model.to(device)
20
-
21
- return model
22
-
23
- def main(img):
24
-
25
- # setup folder and path
26
- #basewidth = 256
27
- #wpercent = (basewidth/float(img.size[0]))
28
- #hsize = int((float(img.size[1])*float(wpercent)))
29
- #img = img.resize((basewidth,hsize), Image.ANTIALIAS)
30
- img.save("test/1.png", "PNG")
31
-
32
- folder, save_dir, border, window_size = setup(args)
33
- os.makedirs(save_dir, exist_ok=True)
34
- test_results = OrderedDict()
35
- test_results['psnr'] = []
36
- test_results['ssim'] = []
37
- test_results['psnr_y'] = []
38
- test_results['ssim_y'] = []
39
- test_results['psnrb'] = []
40
- test_results['psnrb_y'] = []
41
- psnr, ssim, psnr_y, ssim_y, psnrb, psnrb_y = 0, 0, 0, 0, 0, 0
42
-
43
- for idx, path in enumerate(sorted(glob.glob(os.path.join(folder, '*')))):
44
- # read image
45
- imgname, img_lq, img_gt = get_image_pair(args, path) # image to HWC-BGR, float32
46
- img_lq = np.transpose(img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]], (2, 0, 1)) # HCW-BGR to CHW-RGB
47
- img_lq = torch.from_numpy(img_lq).float().unsqueeze(0).to(device) # CHW-RGB to NCHW-RGB
48
-
49
- # inference
50
- with torch.no_grad():
51
- # pad input image to be a multiple of window_size
52
- _, _, h_old, w_old = img_lq.size()
53
- h_pad = (h_old // window_size + 1) * window_size - h_old
54
- w_pad = (w_old // window_size + 1) * window_size - w_old
55
- img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[:, :, :h_old + h_pad, :]
56
- img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad]
57
- output = test(img_lq, model, args, window_size)
58
-
59
- if args.task == 'compressed_sr':
60
- output = output[0][..., :h_old * args.scale, :w_old * args.scale]
61
- else:
62
- output = output[..., :h_old * args.scale, :w_old * args.scale]
63
-
64
- # save image
65
- output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
66
- if output.ndim == 3:
67
- output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR
68
- output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
69
- cv2.imwrite(f'{save_dir}/{imgname}_Swin2SR.png', output)
70
-
71
-
72
- # evaluate psnr/ssim/psnr_b
73
- if img_gt is not None:
74
- img_gt = (img_gt * 255.0).round().astype(np.uint8) # float32 to uint8
75
- img_gt = img_gt[:h_old * args.scale, :w_old * args.scale, ...] # crop gt
76
- img_gt = np.squeeze(img_gt)
77
-
78
- psnr = util.calculate_psnr(output, img_gt, crop_border=border)
79
- ssim = util.calculate_ssim(output, img_gt, crop_border=border)
80
- test_results['psnr'].append(psnr)
81
- test_results['ssim'].append(ssim)
82
- if img_gt.ndim == 3: # RGB image
83
- psnr_y = util.calculate_psnr(output, img_gt, crop_border=border, test_y_channel=True)
84
- ssim_y = util.calculate_ssim(output, img_gt, crop_border=border, test_y_channel=True)
85
- test_results['psnr_y'].append(psnr_y)
86
- test_results['ssim_y'].append(ssim_y)
87
- if args.task in ['jpeg_car', 'color_jpeg_car']:
88
- psnrb = util.calculate_psnrb(output, img_gt, crop_border=border, test_y_channel=False)
89
- test_results['psnrb'].append(psnrb)
90
- if args.task in ['color_jpeg_car']:
91
- psnrb_y = util.calculate_psnrb(output, img_gt, crop_border=border, test_y_channel=True)
92
- test_results['psnrb_y'].append(psnrb_y)
93
- print('Testing {:d} {:20s} - PSNR: {:.2f} dB; SSIM: {:.4f}; PSNRB: {:.2f} dB;'
94
- 'PSNR_Y: {:.2f} dB; SSIM_Y: {:.4f}; PSNRB_Y: {:.2f} dB.'.
95
- format(idx, imgname, psnr, ssim, psnrb, psnr_y, ssim_y, psnrb_y))
96
- else:
97
- print('Testing {:d} {:20s}'.format(idx, imgname))
98
-
99
- # summarize psnr/ssim
100
- if img_gt is not None:
101
- ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
102
- ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
103
- print('\n{} \n-- Average PSNR/SSIM(RGB): {:.2f} dB; {:.4f}'.format(save_dir, ave_psnr, ave_ssim))
104
- if img_gt.ndim == 3:
105
- ave_psnr_y = sum(test_results['psnr_y']) / len(test_results['psnr_y'])
106
- ave_ssim_y = sum(test_results['ssim_y']) / len(test_results['ssim_y'])
107
- print('-- Average PSNR_Y/SSIM_Y: {:.2f} dB; {:.4f}'.format(ave_psnr_y, ave_ssim_y))
108
- if args.task in ['jpeg_car', 'color_jpeg_car']:
109
- ave_psnrb = sum(test_results['psnrb']) / len(test_results['psnrb'])
110
- print('-- Average PSNRB: {:.2f} dB'.format(ave_psnrb))
111
- if args.task in ['color_jpeg_car']:
112
- ave_psnrb_y = sum(test_results['psnrb_y']) / len(test_results['psnrb_y'])
113
- print('-- Average PSNRB_Y: {:.2f} dB'.format(ave_psnrb_y))
114
-
115
- return f"results/swin2sr_{args.task}_x{args.scale}/1_Swin2SR.png"
116
-
117
-
118
- def define_model(args):
119
- # 001 classical image sr
120
- if args.task == 'classical_sr':
121
- model = net(upscale=args.scale, in_chans=3, img_size=args.training_patch_size, window_size=8,
122
- img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
123
- mlp_ratio=2, upsampler='pixelshuffle', resi_connection='1conv')
124
- param_key_g = 'params'
125
-
126
- # 002 lightweight image sr
127
- # use 'pixelshuffledirect' to save parameters
128
- elif args.task in ['lightweight_sr']:
129
- model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8,
130
- img_range=1., depths=[6, 6, 6, 6], embed_dim=60, num_heads=[6, 6, 6, 6],
131
- mlp_ratio=2, upsampler='pixelshuffledirect', resi_connection='1conv')
132
- param_key_g = 'params'
133
-
134
- elif args.task == 'compressed_sr':
135
- model = net(upscale=args.scale, in_chans=3, img_size=args.training_patch_size, window_size=8,
136
- img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
137
- mlp_ratio=2, upsampler='pixelshuffle_aux', resi_connection='1conv')
138
- param_key_g = 'params'
139
-
140
- # 003 real-world image sr
141
- elif args.task == 'real_sr':
142
- if not args.large_model:
143
- # use 'nearest+conv' to avoid block artifacts
144
- model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8,
145
- img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
146
- mlp_ratio=2, upsampler='nearest+conv', resi_connection='1conv')
147
- else:
148
- # larger model size; use '3conv' to save parameters and memory; use ema for GAN training
149
- model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8,
150
- img_range=1., depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], embed_dim=240,
151
- num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
152
- mlp_ratio=2, upsampler='nearest+conv', resi_connection='3conv')
153
- param_key_g = 'params_ema'
154
-
155
- # 006 grayscale JPEG compression artifact reduction
156
- # use window_size=7 because JPEG encoding uses 8x8; use img_range=255 because it's sligtly better than 1
157
- elif args.task == 'jpeg_car':
158
- model = net(upscale=1, in_chans=1, img_size=126, window_size=7,
159
- img_range=255., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
160
- mlp_ratio=2, upsampler='', resi_connection='1conv')
161
- param_key_g = 'params'
162
-
163
- # 006 color JPEG compression artifact reduction
164
- # use window_size=7 because JPEG encoding uses 8x8; use img_range=255 because it's sligtly better than 1
165
- elif args.task == 'color_jpeg_car':
166
- model = net(upscale=1, in_chans=3, img_size=126, window_size=7,
167
- img_range=255., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
168
- mlp_ratio=2, upsampler='', resi_connection='1conv')
169
- param_key_g = 'params'
170
-
171
- pretrained_model = torch.load(args.model_path)
172
- model.load_state_dict(pretrained_model[param_key_g] if param_key_g in pretrained_model.keys() else pretrained_model, strict=True)
173
-
174
- return model
175
-
176
-
177
- def setup(args):
178
- # 001 classical image sr/ 002 lightweight image sr
179
- if args.task in ['classical_sr', 'lightweight_sr', 'compressed_sr']:
180
- save_dir = f'results/swin2sr_{args.task}_x{args.scale}'
181
- if args.save_img_only:
182
- folder = args.folder_lq
183
- else:
184
- folder = args.folder_gt
185
- border = args.scale
186
- window_size = 8
187
-
188
- # 003 real-world image sr
189
- elif args.task in ['real_sr']:
190
- save_dir = f'results/swin2sr_{args.task}_x{args.scale}'
191
- if args.large_model:
192
- save_dir += '_large'
193
- folder = args.folder_lq
194
- border = 0
195
- window_size = 8
196
-
197
- # 006 JPEG compression artifact reduction
198
- elif args.task in ['jpeg_car', 'color_jpeg_car']:
199
- save_dir = f'results/swin2sr_{args.task}_jpeg{args.jpeg}'
200
- folder = args.folder_gt
201
- border = 0
202
- window_size = 7
203
-
204
- return folder, save_dir, border, window_size
205
-
206
-
207
- def get_image_pair(args, path):
208
- (imgname, imgext) = os.path.splitext(os.path.basename(path))
209
-
210
- # 001 classical image sr/ 002 lightweight image sr (load lq-gt image pairs)
211
- if args.task in ['classical_sr', 'lightweight_sr']:
212
- if args.save_img_only:
213
- img_gt = None
214
- img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
215
- else:
216
- img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
217
- img_lq = cv2.imread(f'{args.folder_lq}/{imgname}x{args.scale}{imgext}', cv2.IMREAD_COLOR).astype(
218
- np.float32) / 255.
219
-
220
- elif args.task in ['compressed_sr']:
221
- if args.save_img_only:
222
- img_gt = None
223
- img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
224
- else:
225
- img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
226
- img_lq = cv2.imread(f'{args.folder_lq}/{imgname}.jpg', cv2.IMREAD_COLOR).astype(
227
- np.float32) / 255.
228
-
229
- # 003 real-world image sr (load lq image only)
230
- elif args.task in ['real_sr', 'lightweight_sr_infer']:
231
- img_gt = None
232
- img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
233
-
234
- # 006 grayscale JPEG compression artifact reduction (load gt image and generate lq image on-the-fly)
235
- elif args.task in ['jpeg_car']:
236
- img_gt = cv2.imread(path, cv2.IMREAD_UNCHANGED)
237
- if img_gt.ndim != 2:
238
- img_gt = util.bgr2ycbcr(img_gt, y_only=True)
239
- result, encimg = cv2.imencode('.jpg', img_gt, [int(cv2.IMWRITE_JPEG_QUALITY), args.jpeg])
240
- img_lq = cv2.imdecode(encimg, 0)
241
- img_gt = np.expand_dims(img_gt, axis=2).astype(np.float32) / 255.
242
- img_lq = np.expand_dims(img_lq, axis=2).astype(np.float32) / 255.
243
-
244
- # 006 JPEG compression artifact reduction (load gt image and generate lq image on-the-fly)
245
- elif args.task in ['color_jpeg_car']:
246
- img_gt = cv2.imread(path)
247
- result, encimg = cv2.imencode('.jpg', img_gt, [int(cv2.IMWRITE_JPEG_QUALITY), args.jpeg])
248
- img_lq = cv2.imdecode(encimg, 1)
249
- img_gt = img_gt.astype(np.float32)/ 255.
250
- img_lq = img_lq.astype(np.float32)/ 255.
251
-
252
- return imgname, img_lq, img_gt
253
-
254
-
255
- def test(img_lq, model, args, window_size):
256
- if args.tile is None:
257
- # test the image as a whole
258
- output = model(img_lq)
259
- else:
260
- # test the image tile by tile
261
- b, c, h, w = img_lq.size()
262
- tile = min(args.tile, h, w)
263
- assert tile % window_size == 0, "tile size should be a multiple of window_size"
264
- tile_overlap = args.tile_overlap
265
- sf = args.scale
266
-
267
- stride = tile - tile_overlap
268
- h_idx_list = list(range(0, h-tile, stride)) + [h-tile]
269
- w_idx_list = list(range(0, w-tile, stride)) + [w-tile]
270
- E = torch.zeros(b, c, h*sf, w*sf).type_as(img_lq)
271
- W = torch.zeros_like(E)
272
-
273
- for h_idx in h_idx_list:
274
- for w_idx in w_idx_list:
275
- in_patch = img_lq[..., h_idx:h_idx+tile, w_idx:w_idx+tile]
276
- out_patch = model(in_patch)
277
- out_patch_mask = torch.ones_like(out_patch)
278
-
279
- E[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch)
280
- W[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch_mask)
281
- output = E.div_(W)
282
-
283
- return output
284
-
285
- if __name__ == '__main__':
286
-
287
- parser = argparse.ArgumentParser()
288
- parser.add_argument('--task', type=str, default='compressed_sr', help='classical_sr, lightweight_sr, real_sr, '
289
- 'gray_dn, color_dn, jpeg_car, color_jpeg_car')
290
- parser.add_argument('--scale', type=int, default=4, help='scale factor: 1, 2, 3, 4, 8') # 1 for dn and jpeg car
291
- parser.add_argument('--noise', type=int, default=15, help='noise level: 15, 25, 50')
292
- parser.add_argument('--jpeg', type=int, default=10, help='scale factor: 10, 20, 30, 40')
293
- parser.add_argument('--training_patch_size', type=int, default=48, help='patch size used in training Swin2SR. '
294
- 'Just used to differentiate two different settings in Table 2 of the paper. '
295
- 'Images are NOT tested patch by patch.')
296
- parser.add_argument('--large_model', action='store_true', help='use large model, only provided for real image sr')
297
- parser.add_argument('--model_path', type=str,
298
- default='experiments/pretrained_models/Swin2SR_CompressedSR_X4_48.pth')
299
- parser.add_argument('--folder_lq', type=str, default="test", help='input low-quality test image folder')
300
- parser.add_argument('--folder_gt', type=str, default=None, help='input ground-truth test image folder')
301
- parser.add_argument('--tile', type=int, default=None, help='Tile size, None for no tile during testing (testing as a whole)')
302
- parser.add_argument('--tile_overlap', type=int, default=32, help='Overlapping of different tiles')
303
- parser.add_argument('--save_img_only', default=True, action='store_true', help='save image and do not evaluate')
304
- args = parser.parse_args()
305
-
306
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
307
- # set up model
308
- if os.path.exists(args.model_path):
309
- print(f'loading model from {args.model_path}')
310
- else:
311
- os.makedirs(os.path.dirname(args.model_path), exist_ok=True)
312
- url = 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/{}'.format(os.path.basename(args.model_path))
313
- r = requests.get(url, allow_redirects=True)
314
- print(f'downloading model {args.model_path}')
315
- open(args.model_path, 'wb').write(r.content)
316
-
317
- model = setup_model(args)
318
-
319
- os.makedirs("test", exist_ok=True)
320
-
321
- #main(img)
322
-
323
- title = "Super-Resolution Demo Swin2SR Official 🚀🚀🔥"
324
- description = '''
325
- <br>
326
-
327
- **This Demo expects low-quality and low-resolution JPEG compressed images, in the near future we will support any kind of input**
328
-
329
- **We are looking for collaborators! Collaborator를 찾고 있습니다!** 🇬🇧 🇪🇸 🇰🇷 🇫🇷 🇷🇴 🇩🇪 🇨🇳
330
-
331
- **Please check our github project: https://github.com/mv-lab/swin2sr and feel free to contact us**
332
-
333
- **Demos also available at [google colab](https://colab.research.google.com/drive/1paPrt62ydwLv2U2eZqfcFsePI4X4WRR1?usp=sharing) and [Kaggle](https://www.kaggle.com/code/jesucristo/super-resolution-demo-swin2sr-official/)**
334
- </br>
335
- '''
336
- article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2209.11345' target='_blank'>Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration</a> | <a href='https://github.com/mv-lab/swin2sr' target='_blank'>Github Repo</a></p>"
337
-
338
- examples= glob.glob("testsets/real-inputs/*.jpg")
339
- gr.Interface(
340
- main,
341
- #gr.Image().style(full_width=True, height=60),
342
- gr.inputs.Image(type="pil", label="Input").style(height=260),
343
- gr.inputs.Image(type="pil", label="Ouput").style(height=240),
344
- title=title,
345
- description=description,
346
- article=article,
347
- examples=examples,
348
- ).launch(enable_queue=True)
 
 
 
 
 
1
  import gradio as gr
 
 
 
 
 
 
 
2
 
3
+ def greet(name):
4
+ return "Hello " + name + "!!"
5
 
6
+ iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
+ iface.launch()