cs482-toxic-tweets / train.py
jjmakes's picture
Create train.py
4b25b72
raw
history blame
5.9 kB
# John Makely
# Finetune Language Modeling Based on BERTweet
# ./jigsaw-toxic-comment-classification-challenge/train.csv
# "id","comment_text","toxic","severe_toxic","obscene","threat","insult","identity_hate" [6 total classifiers]
# 1. Extract text from csv
# 2. Tokenize text (BERTweet, RoBERTa, GPT-2)
# 3. Pass each tokenized text to a model with each classifier
# 4. Train each model
# 5. Save each model
import pandas as pd
import os
from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments, AutoTokenizer, RobertaTokenizer, RobertaForSequenceClassification, GPT2Tokenizer, GPT2ForSequenceClassification
import torch
from torch.utils.data import Dataset
torch.cuda.empty_cache()
# Create Dataset class
class MultiLabelClassifierDataset(Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx])
for key, val in self.encodings.items()}
item['labels'] = torch.tensor(self.labels[idx]).float()
return item
def __len__(self):
return len(self.labels)
# Set up directories
work_dir = os.path.dirname(os.path.realpath(__file__)) + '/'
dataset_dir = work_dir + 'jigsaw-toxic-comment-classification-challenge/'
# Set up labels
classifiers = ['toxic', 'severe_toxic', 'obscene',
'threat', 'insult', 'identity_hate']
# Use train.csv to split into train, val, test
print("Loading data...")
df = pd.read_csv(dataset_dir + 'train.csv')
df = df.sample(frac=1).reset_index(drop=True) # Shuffle
# Split into train, val, test
train_df = df[:int(len(df)*0.1)]
# Extracting the last 6 columns into a numpy array
train_labels = train_df[classifiers].to_numpy()
# Setting device
device = torch.device('cuda')
print("Using device: ", device)
# # # # # # # # # # # ##
# # # # # BERT # # # # #
# # # # # # # # # # # ##
training_args = TrainingArguments(
output_dir='./results',
num_train_epochs=2,
per_device_train_batch_size=32,
per_device_eval_batch_size=64,
warmup_steps=500,
weight_decay=0.01,
logging_dir='./logs',
logging_steps=10,
fp16=True
)
print("BERT")
bert_dir = work_dir + 'bert/'
print("Tokenizing")
print("Model base: ", "vinai/bertweet-base")
tokenizer = AutoTokenizer.from_pretrained(
"vinai/bertweet-base", model_max_length=128)
print("Creating train encodings...")
train_encodings = tokenizer(
train_df['comment_text'].tolist(), truncation=True, padding=True)
# def bert_train_model('vinai/bertweet-base', num_labels, training_args, train_encodings, train_dataset, model_dir):
print("Training model to be stored in" + bert_dir)
# # Create dataset
print("Creating dataset")
train_dataset = MultiLabelClassifierDataset(train_encodings, train_labels)
# # Load model
print("Loading model for training...")
model = AutoModelForSequenceClassification.from_pretrained(
'vinai/bertweet-base', num_labels=6)
# Create Trainer
print("Creating trainer...")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset
)
# Train
print("Training...")
trainer.train()
# # Save model
print("Saving model to " + bert_dir + '_bert_model')
trainer.save_model(bert_dir + '_bert_model')
# # # # # # # # # # # #
# # # # RoBERTa # # # #
# # # # # # # # # # # #
training_args = TrainingArguments(
output_dir='./results',
num_train_epochs=1,
per_device_train_batch_size=32,
per_device_eval_batch_size=16,
warmup_steps=500,
weight_decay=0.01,
logging_dir='./logs',
logging_steps=10,
fp16=True
)
# RoBERTa
print("RoBERTa")
roberta_dir = work_dir + 'roberta/'
print("Tokenizing")
print("Model base: ", 'roberta-base')
tokenizer = RobertaTokenizer.from_pretrained(
'roberta-base', model_max_length=128)
train_encodings = tokenizer(
train_df['comment_text'].tolist(), truncation=True, padding=True)
# Create dataset
print("Creating dataset")
train_dataset = MultiLabelClassifierDataset(train_encodings, train_labels)
# Load model
print("Loading model for training...")
model = AutoModelForSequenceClassification.from_pretrained(
'roberta-base', num_labels=6)
# Create Trainer
print("Creating trainer...")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset
)
# Train
print("Training...")
trainer.train()
# Save model
print("Saving model to " + roberta_dir + '_roberta_model')
trainer.save_model(roberta_dir + '_roberta_model')
# # # # # # # # # # # ##
# # # distilbert # # # #
# # # # # # # # # # # ##
training_args = TrainingArguments(
output_dir='./results',
num_train_epochs=1,
per_device_train_batch_size=32,
per_device_eval_batch_size=64,
warmup_steps=500,
weight_decay=0.01,
logging_dir='./logs',
logging_steps=10,
fp16=True
)
print("DISTILBERT")
distilbert_dir = work_dir + 'distilbert/'
print("Tokenizing")
print("Model base: ", 'distilbert-base-cased')
tokenizer = AutoTokenizer.from_pretrained(
'distilbert-base-cased', model_max_length=128)
print("Creating train encodings...")
train_encodings = tokenizer(
train_df['comment_text'].tolist(), truncation=True, padding=True)
print("Training model to be stored in" + distilbert_dir)
# Create dataset
print("Creating dataset")
train_dataset = MultiLabelClassifierDataset(train_encodings, train_labels)
# Load model
print("Loading model for training...")
model = AutoModelForSequenceClassification.from_pretrained(
'distilbert-base-cased', num_labels=6)
# Create Trainer
print("Creating trainer...")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset
)
# Train
print("Training...")
trainer.train()
# Save model
print("Saving model to " + distilbert_dir + '_distilbert_model')
trainer.save_model(distilbert_dir + '_distilbert_model')