from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, BitsAndBytesConfig, GenerationConfig import gradio as gr import torch title = "????AI ChatBot bajo GPU" description = "A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)" examples = [["How are you?"]] model_id="clibrain/Llama-2-13b-ft-instruct-es-gptq-4bit" config = AutoConfig.from_pretrained(model_id) #config.quantization_config["use_exllama"] = True config.quantization_config["disable_exllama"] = True config.quantization_config["exllama_config"] = {"version":2} device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print("********************") print(device) print("********************") model = AutoModelForCausalLM.from_pretrained(model_id, config=config, torch_dtype=torch.float32) #float 32 es necesario para CPU #model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") model = model.to(device) tokenizer = AutoTokenizer.from_pretrained(model_id) def predict(input, history=[]): # tokenize the new input sentence new_user_input_ids = tokenizer.encode( input + tokenizer.eos_token, return_tensors="pt" ).to(device) # append the new user input tokens to the chat history historygpu=torch.LongTensor(history).to(device) bot_input_ids = torch.cat([historygpu, new_user_input_ids], dim=-1) # generate a response history = model.generate( bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id ) # convert the tokens to text, and then split the responses into lines response = tokenizer.decode(history[0]).split("<|endoftext|>") # print('decoded_response-->>'+str(response)) print(response) response = [ (response[i], response[i + 1]) for i in range(0, len(response) - 1, 2) ] # convert to tuples of list # print('response-->>'+str(response)) return response, history gr.Interface( fn=predict, title=title, description=description, examples=examples, inputs=["text", "state"], outputs=["chatbot", "state"], theme="finlaymacklon/boxy_violet", ).launch()