|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
|
|
from transformers import AutoConfig, AutoModelForCausalLM, \ |
|
MptConfig, MptForCausalLM, MptModel |
|
from llava.model.llava_arch import LlavaMetaModel, LlavaMetaForCausalLM |
|
|
|
|
|
class LlavaMptConfig(MptConfig): |
|
model_type = "llava_mpt" |
|
|
|
|
|
class LlavaMptModel(LlavaMetaModel, MptModel): |
|
config_class = LlavaMptConfig |
|
|
|
def __init__(self, config: MptConfig): |
|
config.hidden_size = config.d_model |
|
super(LlavaMptModel, self).__init__(config) |
|
|
|
def embed_tokens(self, x): |
|
return self.wte(x) |
|
|
|
|
|
class LlavaMptForCausalLM(MptForCausalLM, LlavaMetaForCausalLM): |
|
config_class = LlavaMptConfig |
|
supports_gradient_checkpointing = True |
|
|
|
def __init__(self, config): |
|
super(MptForCausalLM, self).__init__(config) |
|
|
|
self.transformer = LlavaMptModel(config) |
|
self.lm_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_model(self): |
|
return self.transformer |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, LlavaMptModel): |
|
module.gradient_checkpointing = value |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
images=None): |
|
|
|
input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images) |
|
|
|
return super().forward( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
labels=labels, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): |
|
images = kwargs.pop("images", None) |
|
_inputs = super().prepare_inputs_for_generation( |
|
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs |
|
) |
|
_inputs['images'] = images |
|
return _inputs |
|
|
|
|
|
AutoConfig.register("llava_mpt", LlavaMptConfig) |
|
AutoModelForCausalLM.register(LlavaMptConfig, LlavaMptForCausalLM) |
|
|