from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import HuggingFaceBgeEmbeddings from langchain.vectorstores import FAISS from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from langchain.llms import HuggingFaceHub from htmlTemplates import css, bot_template, user_template from dotenv import load_dotenv from PyPDF2 import PdfReader import streamlit as st import requests import json import os # set this key as an environment variable os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token'] # Page configuration st.set_page_config(page_title="SemaNaPDF", page_icon="📚",) # Sema Translator #Public_Url = os.environ["sema_url"] #endpoint def translate(userinput, target_lang, source_lang=None): if source_lang: url = "Public_Url/translate_enter/" data = { "userinput": userinput, "source_lang": source_lang, "target_lang": target_lang, } response = requests.post(url, json=data) result = response.json() print(type(result)) source_lange = source_lang translation = result['translated_text'] return source_lange, translation else: url = "Public_Url/translate_detect/" data = { "userinput": userinput, "target_lang": target_lang, } response = requests.post(url, json=data) result = response.json() source_lange = result['source_language'] translation = result['translated_text'] return source_lange, translation def get_pdf_text(pdf_docs : list) -> str: text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text def get_text_chunks(text:str) ->list: text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len ) chunks = text_splitter.split_text(text) return chunks def get_vectorstore(text_chunks : list) -> FAISS: model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2" encode_kwargs = { "normalize_embeddings": True } # set True to compute cosine similarity embeddings = HuggingFaceBgeEmbeddings( model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"} ) vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) return vectorstore def get_conversation_chain(vectorstore:FAISS) -> ConversationalRetrievalChain: llm = HuggingFaceHub( repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", #repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF" model_kwargs={"temperature": 0.5, "max_length": 1048}, ) memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory ) return conversation_chain def main(): st.title("SemaNaPDF📚") # upload file pdf_docs = st.file_uploader( "Upload your PDFs here and click on 'Process'", accept_multiple_files=True ) if pdf_docs is not None: with st.spinner("processing"): # get pdf text raw_text = get_pdf_text(pdf_docs) # get the text chunks text_chunks = get_text_chunks(raw_text) # create vector store vectorstore = get_vectorstore(text_chunks) # create conversation chain st.session_state.conversation = get_conversation_chain(vectorstore) st.info("done") #user_question = st.text_input("Get insights into your finances ...") # show user input if "messages" not in st.session_state: st.session_state.messages = [] for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) if user_question := st.chat_input("Ask your document anything ......?"): with st.chat_message("user"): st.markdown(user_question) st.session_state.messages.append({"role": "user", "content": user_question}) response = st.session_state.conversation({"question": user_question}) st.session_state.chat_history = response["chat_history"] with st.chat_message("assistant"): st.markdown(response) st.session_state.messages.append({"role": "assistant", "content": response}) if __name__ == '__main__': main()