FreshBench / app.py
jijivski
add former
bccb671
raw
history blame
6.78 kB
import gradio as gr
import os
from transformers import AutoTokenizer
from get_loss.get_loss_hf import run_get_loss
import pdb
from types import SimpleNamespace
# os.system('git clone https://github.com/EleutherAI/lm-evaluation-harness')
# os.system('cd lm-evaluation-harness')
# os.system('pip install -e .')
# -i https://pypi.tuna.tsinghua.edu.cn/simple
# 第一个功能:基于输入文本和对应的损失值对文本进行着色展示
def color_text(text_list=["hi", "FreshEval","!"], loss_list=[0.1,0.7]):
"""
根据损失值为文本着色。
"""
highlighted_text = []
# print('loss_list',loss_list)
# ndarray to list
loss_list = loss_list.tolist()
loss_list=[0]+loss_list
# print('loss_list',loss_list)
# print('text_list',text_list)
# pdb.set_trace()
for text, loss in zip(text_list, loss_list):
# color = "#FF0000" if float(loss) > 0.5 else "#00FF00"
color=loss/20#TODO rescale
# highlighted_text.append({"text": text, "bg_color": color})
highlighted_text.append((text, color))
print('highlighted_text',highlighted_text)
return highlighted_text
# 第二个功能:根据 ID 列表和 tokenizer 将 ID 转换为文本,并展示
def get_text(ids_list=[0.1,0.7], tokenizer=None):
"""
给定一个 ID 列表和 tokenizer 名称,将这些 ID 转换成文本。
"""
# return ['Hi', 'Adam']
# tokenizer = AutoTokenizer.from_pretrained(tokenizer)
# print('ids_list',ids_list)
# pdb.set_trace()
text=[]
for id in ids_list:
text.append( tokenizer.decode(id, skip_special_tokens=True))
# 这里只是简单地返回文本,但是可以根据实际需求添加颜色或其他样式
print(f'L41:{text}')
return text
# def get_ids_loss(text, tokenizer, model):
# """
# 给定一个文本,model and its tokenizer,返回其对应的 IDs 和损失值。
# """
# # tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
# # model = AutoModelForCausalLM.from_pretrained(model_name)
# # 这里只是简单地返回 IDs 和损失值,但是可以根据实际需求添加颜色或其他样式
# return [1, 2], [0.1, 0.7]
def color_pipeline(texts=["Hi","FreshEval","!"], model=None):
"""
给定一个文本,返回其对应的着色文本。
"""
print('text,model',texts,model)
args=SimpleNamespace(texts=texts,model=model)
print(f'L60,text:{texts}')
rtn_dic=run_get_loss(args)
# print(rtn_dic)
# pdb.set_trace()
# {'logit':logit,'input_ids':input_chunk,'tokenizer':tokenizer,'neg_log_prob_temp':neg_log_prob_temp}
ids, loss =rtn_dic['input_ids'],rtn_dic['loss']#= get_ids_loss(text, tokenizer, model)
# notice here is numpy ndarray
tokenizer=rtn_dic['tokenizer'] # get tokenizer
text = get_text(ids, tokenizer)
# print('ids, loss ,text',ids, loss ,text)
return color_text(text, loss)
# TODO can this be global ? maybe need session to store info of the user
# 创建 Gradio 界面
with gr.Blocks() as demo:
with gr.Tab("color your text"):
with gr.Row():
text_input = gr.Textbox(label="input text", placeholder="input your text here...")
# TODO craw and drop the file
# loss_input = gr.Number(label="loss")
model_input = gr.Textbox(label="model name", placeholder="input your model name here... now I am trying phi-2...")
output_box=gr.HighlightedText(label="colored text")
# gr.Examples(
# [
# # ["Hi FreshEval !", "microsoft/phi-2"],
# ["Hello FreshBench !", "/home/sribd/chenghao/models/phi-2"],
# ],
# [text_input, model_input],
# cache_examples=True,
# # cache_examples=False,
# fn=color_pipeline,
# outputs=output_box
# )
# TODO select models that can be used online
# TODO maybe add our own models
color_text_output = gr.HTML(label="colored text")
color_text_button = gr.Button("color the text").click(color_pipeline, inputs=[text_input, model_input], outputs=output_box)
date_time_input = gr.Textbox(label="the date when the text is generated")#TODO add date time input
description_input = gr.Textbox(label="description of the text")
submit_button = gr.Button("submit a post or record").click()
#TODO add model and its score
with gr.Tab('test your qeustion'):
'''
use extract, or use ppl
'''
question=gr.Textbox(placeholder='input your question here...')
answer=gr.Textbox(placeholder='input your answer here...')
other_choices=gr.Textbox(placeholder='input your other choices here...')
test_button=gr.Button('test').click()
#TODO add the model and its score
def test_question(question, answer, other_choices):
'''
use extract, or use ppl
'''
answer_ppl, other_choices_ppl = get_ppl(question, answer, other_choices)
return answer_ppl, other_choices_ppl
with gr.Tab("model text ppl with time"):
'''
see the matplotlib example, to see ppl with time, select the models
'''
# load the json file with time,
with gr.Tab("model quesion acc with time"):
'''
see the matplotlib example, to see ppl with time, select the models
'''
#
with gr.Tab("hot questions"):
'''
see the questions and answers
'''
with gr.Tab("ppl"):
'''
see the questions
'''
demo.launch(debug=True)
# import gradio as gr
# import os
# os.system('python -m spacy download en_core_web_sm')
# import spacy
# from spacy import displacy
# nlp = spacy.load("en_core_web_sm")
# def text_analysis(text):
# doc = nlp(text)
# html = displacy.render(doc, style="dep", page=True)
# html = (
# "<div style='max-width:100%; max-height:360px; overflow:auto'>"
# + html
# + "</div>"
# )
# pos_count = {
# "char_count": len(text),
# "token_count": 0,
# }
# pos_tokens = []
# for token in doc:
# pos_tokens.extend([(token.text, token.pos_), (" ", None)])
# return pos_tokens, pos_count, html
# demo = gr.Interface(
# text_analysis,
# gr.Textbox(placeholder="Enter sentence here..."),
# ["highlight", "json", "html"],
# examples=[
# ["What a beautiful morning for a walk!"],
# ["It was the best of times, it was the worst of times."],
# ],
# )
# demo.launch()
# # lm-eval
# # lm-evaluation-harness