Spaces:
Runtime error
Runtime error
File size: 8,679 Bytes
12b7f59 5fb2d4c 12b7f59 7b6e4c3 12b7f59 285fe22 5fb2d4c 285fe22 12b7f59 5fb2d4c 12b7f59 5fb2d4c 12b7f59 5fb2d4c 12b7f59 5fb2d4c 12b7f59 5fb2d4c 12b7f59 5fb2d4c 12b7f59 5fb2d4c 12b7f59 5fb2d4c 12b7f59 5fb2d4c 12b7f59 5fb2d4c 12b7f59 ca869ab 12b7f59 285fe22 12b7f59 285fe22 12b7f59 285fe22 12b7f59 285fe22 12b7f59 285fe22 12b7f59 5fb2d4c 12b7f59 0feaa66 2b455b2 0feaa66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import gradio as gr
import os
from PIL import Image
import subprocess
import hashlib
os.system('pip install -e ./simple-knn')
os.system('pip install -e ./diff-gaussian-rasterization')
# check if there is a picture uploaded or selected
def check_img_input(control_image):
if control_image is None:
raise gr.Error("Please select or upload an input image")
def optimize(image_block: Image.Image, preprocess_chk=True, elevation_slider=0):
stage_1_output = optimize_stage_1(image_block, preprocess_chk, elevation_slider)
stage_2_output = optimize_stage_2(image_block, elevation_slider)
return stage_1_output, stage_2_output
def optimize_stage_1(image_block: Image.Image, preprocess_chk: bool, elevation_slider: float):
if not os.path.exists('tmp_data'):
os.makedirs('tmp_data')
img_hash = hashlib.sha256(image_block.tobytes()).hexdigest()
if preprocess_chk:
# save image to a designated path
image_block.save(f'tmp_data/{img_hash}.png')
# preprocess image
subprocess.run([f'python process.py tmp_data/{img_hash}.png'], shell=True)
else:
image_block.save(f'tmp_data/{img_hash}_rgba.png')
# stage 1
subprocess.run([
f'python main.py --config configs/image.yaml input=tmp_data/{img_hash}_rgba.png save_path={img_hash} mesh_format=glb elevation={elevation_slider} force_cuda_rast=True'],
shell=True)
return f'logs/{img_hash}_mesh.glb'
def optimize_stage_2(image_block: Image.Image, elevation_slider: float):
img_hash = hashlib.sha256(image_block.tobytes()).hexdigest()
# stage 2
subprocess.run([
f'python main2.py --config configs/image.yaml input=tmp_data/{img_hash}_rgba.png save_path={img_hash} mesh_format=glb elevation={elevation_slider} force_cuda_rast=True'],
shell=True)
return f'logs/{img_hash}.glb'
if __name__ == "__main__":
_TITLE = '''DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation'''
_DESCRIPTION = '''
<div>
<a style="display:inline-block" href="https://dreamgaussian.github.io"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2309.16653"><img src="https://img.shields.io/badge/2309.16653-f9f7f7?logo="></a>
<a style="display:inline-block; margin-left: .5em" href='https://github.com/dreamgaussian/dreamgaussian'><img src='https://img.shields.io/github/stars/dreamgaussian/dreamgaussian?style=social'/></a>
</div>
We present DreamGausssion, a 3D content generation framework that significantly improves the efficiency of 3D content creation.
'''
_DUPLICATE ='''
[![Duplicate this Space](https://huggingface.co./datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg)](https://huggingface.co./spaces/jiawei011/dreamgaussian?duplicate=true)
'''
_IMG_USER_GUIDE = "Please upload an image in the block above (or choose an example above) and click **Generate 3D**."
# load images in 'data' folder as examples
example_folder = os.path.join(os.path.dirname(__file__), 'data')
example_fns = os.listdir(example_folder)
example_fns.sort()
examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')]
# Compose demo layout & data flow
with gr.Blocks(title=_TITLE, theme=gr.themes.Soft()) as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
with gr.Column(scale=0):
gr.Markdown(_DUPLICATE)
gr.Markdown(_DESCRIPTION)
# Image-to-3D
with gr.Row(variant='panel'):
left_column = gr.Column(scale=5)
with left_column:
image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image', tool=None)
elevation_slider = gr.Slider(-90, 90, value=0, step=1, label='Estimated elevation angle')
gr.Markdown(
"default to 0 (horizontal), range from [-90, 90]. If you upload a look-down image, try a value like -30")
preprocess_chk = gr.Checkbox(True,
label='Preprocess image automatically (remove background and recenter object)')
with gr.Column(scale=5):
obj3d_stage1 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Stage 1)")
obj3d = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Final)")
with left_column:
gr.Examples(
examples=examples_full, # NOTE: elements must match inputs list!
inputs=[image_block],
outputs=[obj3d_stage1, obj3d],
fn=optimize,
cache_examples=True,
label='Examples (click one of the images below to start)',
examples_per_page=40
)
img_run_btn = gr.Button("Generate 3D")
img_guide_text = gr.Markdown(_IMG_USER_GUIDE, visible=True)
# if there is an input image, continue with inference
# else display an error message
img_run_btn.click(check_img_input, inputs=[image_block], queue=False).success(optimize_stage_1,
inputs=[image_block,
preprocess_chk,
elevation_slider],
outputs=[
obj3d_stage1]).success(
optimize_stage_2, inputs=[image_block, elevation_slider], outputs=[obj3d])
# demo.launch(enable_queue=True)
demo.queue(max_size=10) # <-- Sets up a queue with default parameters
demo.launch() |