jhj0517 commited on
Commit
93091a7
·
1 Parent(s): 11c6540

Port LivePortrait base

Browse files
modules/__init__.py ADDED
File without changes
modules/config/inference_config.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+
2
+ import os
3
+
4
+ current_file_path = os.path.abspath(__file__)
5
+ current_directory = os.path.dirname(current_file_path)
6
+ class InferenceConfig:
7
+ def __init__(self):
8
+ self.flag_use_half_precision: bool = False # whether to use half precision
modules/config/models.yaml ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model_params:
2
+ appearance_feature_extractor_params: # the F in the paper
3
+ image_channel: 3
4
+ block_expansion: 64
5
+ num_down_blocks: 2
6
+ max_features: 512
7
+ reshape_channel: 32
8
+ reshape_depth: 16
9
+ num_resblocks: 6
10
+ motion_extractor_params: # the M in the paper
11
+ num_kp: 21
12
+ backbone: convnextv2_tiny
13
+ warping_module_params: # the W in the paper
14
+ num_kp: 21
15
+ block_expansion: 64
16
+ max_features: 512
17
+ num_down_blocks: 2
18
+ reshape_channel: 32
19
+ estimate_occlusion_map: True
20
+ dense_motion_params:
21
+ block_expansion: 32
22
+ max_features: 1024
23
+ num_blocks: 5
24
+ reshape_depth: 16
25
+ compress: 4
26
+ spade_generator_params: # the G in the paper
27
+ upscale: 2 # represents upsample factor 256x256 -> 512x512
28
+ block_expansion: 64
29
+ max_features: 512
30
+ num_down_blocks: 2
31
+ stitching_retargeting_module_params: # the S in the paper
32
+ stitching:
33
+ input_size: 126 # (21*3)*2
34
+ hidden_sizes: [128, 128, 64]
35
+ output_size: 65 # (21*3)+2(tx,ty)
36
+ lip:
37
+ input_size: 65 # (21*3)+2
38
+ hidden_sizes: [128, 128, 64]
39
+ output_size: 63 # (21*3)
40
+ eye:
41
+ input_size: 66 # (21*3)+3
42
+ hidden_sizes: [256, 256, 128, 128, 64]
43
+ output_size: 63 # (21*3)
modules/live_portrait/__init__.py ADDED
File without changes
modules/live_portrait/appearance_feature_extractor.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ Appearance extractor(F) defined in paper, which maps the source image s to a 3D appearance feature volume.
5
+ """
6
+
7
+ import torch
8
+ from torch import nn
9
+ from .util import SameBlock2d, DownBlock2d, ResBlock3d
10
+
11
+
12
+ class AppearanceFeatureExtractor(nn.Module):
13
+
14
+ def __init__(self, image_channel, block_expansion, num_down_blocks, max_features, reshape_channel, reshape_depth, num_resblocks):
15
+ super(AppearanceFeatureExtractor, self).__init__()
16
+ self.image_channel = image_channel
17
+ self.block_expansion = block_expansion
18
+ self.num_down_blocks = num_down_blocks
19
+ self.max_features = max_features
20
+ self.reshape_channel = reshape_channel
21
+ self.reshape_depth = reshape_depth
22
+
23
+ self.first = SameBlock2d(image_channel, block_expansion, kernel_size=(3, 3), padding=(1, 1))
24
+
25
+ down_blocks = []
26
+ for i in range(num_down_blocks):
27
+ in_features = min(max_features, block_expansion * (2 ** i))
28
+ out_features = min(max_features, block_expansion * (2 ** (i + 1)))
29
+ down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1)))
30
+ self.down_blocks = nn.ModuleList(down_blocks)
31
+
32
+ self.second = nn.Conv2d(in_channels=out_features, out_channels=max_features, kernel_size=1, stride=1)
33
+
34
+ self.resblocks_3d = torch.nn.Sequential()
35
+ for i in range(num_resblocks):
36
+ self.resblocks_3d.add_module('3dr' + str(i), ResBlock3d(reshape_channel, kernel_size=3, padding=1))
37
+
38
+ def forward(self, source_image):
39
+ out = self.first(source_image) # Bx3x256x256 -> Bx64x256x256
40
+
41
+ for i in range(len(self.down_blocks)):
42
+ out = self.down_blocks[i](out)
43
+ out = self.second(out)
44
+ bs, c, h, w = out.shape # ->Bx512x64x64
45
+
46
+ f_s = out.view(bs, self.reshape_channel, self.reshape_depth, h, w) # ->Bx32x16x64x64
47
+ f_s = self.resblocks_3d(f_s) # ->Bx32x16x64x64
48
+ return f_s
modules/live_portrait/convnextv2.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ This moudle is adapted to the ConvNeXtV2 version for the extraction of implicit keypoints, poses, and expression deformation.
5
+ """
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+ # from timm.models.layers import trunc_normal_, DropPath
10
+ from .util import LayerNorm, DropPath, trunc_normal_, GRN
11
+
12
+ __all__ = ['convnextv2_tiny']
13
+
14
+
15
+ class Block(nn.Module):
16
+ """ ConvNeXtV2 Block.
17
+
18
+ Args:
19
+ dim (int): Number of input channels.
20
+ drop_path (float): Stochastic depth rate. Default: 0.0
21
+ """
22
+
23
+ def __init__(self, dim, drop_path=0.):
24
+ super().__init__()
25
+ self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
26
+ self.norm = LayerNorm(dim, eps=1e-6)
27
+ self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
28
+ self.act = nn.GELU()
29
+ self.grn = GRN(4 * dim)
30
+ self.pwconv2 = nn.Linear(4 * dim, dim)
31
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
32
+
33
+ def forward(self, x):
34
+ input = x
35
+ x = self.dwconv(x)
36
+ x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
37
+ x = self.norm(x)
38
+ x = self.pwconv1(x)
39
+ x = self.act(x)
40
+ x = self.grn(x)
41
+ x = self.pwconv2(x)
42
+ x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
43
+
44
+ x = input + self.drop_path(x)
45
+ return x
46
+
47
+
48
+ class ConvNeXtV2(nn.Module):
49
+ """ ConvNeXt V2
50
+
51
+ Args:
52
+ in_chans (int): Number of input image channels. Default: 3
53
+ num_classes (int): Number of classes for classification head. Default: 1000
54
+ depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
55
+ dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
56
+ drop_path_rate (float): Stochastic depth rate. Default: 0.
57
+ head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
58
+ """
59
+
60
+ def __init__(
61
+ self,
62
+ in_chans=3,
63
+ depths=[3, 3, 9, 3],
64
+ dims=[96, 192, 384, 768],
65
+ drop_path_rate=0.,
66
+ **kwargs
67
+ ):
68
+ super().__init__()
69
+ self.depths = depths
70
+ self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers
71
+ stem = nn.Sequential(
72
+ nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
73
+ LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
74
+ )
75
+ self.downsample_layers.append(stem)
76
+ for i in range(3):
77
+ downsample_layer = nn.Sequential(
78
+ LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
79
+ nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
80
+ )
81
+ self.downsample_layers.append(downsample_layer)
82
+
83
+ self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks
84
+ dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
85
+ cur = 0
86
+ for i in range(4):
87
+ stage = nn.Sequential(
88
+ *[Block(dim=dims[i], drop_path=dp_rates[cur + j]) for j in range(depths[i])]
89
+ )
90
+ self.stages.append(stage)
91
+ cur += depths[i]
92
+
93
+ self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer
94
+
95
+ # NOTE: the output semantic items
96
+ num_bins = kwargs.get('num_bins', 66)
97
+ num_kp = kwargs.get('num_kp', 24) # the number of implicit keypoints
98
+ self.fc_kp = nn.Linear(dims[-1], 3 * num_kp) # implicit keypoints
99
+
100
+ # print('dims[-1]: ', dims[-1])
101
+ self.fc_scale = nn.Linear(dims[-1], 1) # scale
102
+ self.fc_pitch = nn.Linear(dims[-1], num_bins) # pitch bins
103
+ self.fc_yaw = nn.Linear(dims[-1], num_bins) # yaw bins
104
+ self.fc_roll = nn.Linear(dims[-1], num_bins) # roll bins
105
+ self.fc_t = nn.Linear(dims[-1], 3) # translation
106
+ self.fc_exp = nn.Linear(dims[-1], 3 * num_kp) # expression / delta
107
+
108
+ def _init_weights(self, m):
109
+ if isinstance(m, (nn.Conv2d, nn.Linear)):
110
+ trunc_normal_(m.weight, std=.02)
111
+ nn.init.constant_(m.bias, 0)
112
+
113
+ def forward_features(self, x):
114
+ for i in range(4):
115
+ x = self.downsample_layers[i](x)
116
+ x = self.stages[i](x)
117
+ return self.norm(x.mean([-2, -1])) # global average pooling, (N, C, H, W) -> (N, C)
118
+
119
+ def forward(self, x):
120
+ x = self.forward_features(x)
121
+
122
+ # implicit keypoints
123
+ kp = self.fc_kp(x)
124
+
125
+ # pose and expression deformation
126
+ pitch = self.fc_pitch(x)
127
+ yaw = self.fc_yaw(x)
128
+ roll = self.fc_roll(x)
129
+ t = self.fc_t(x)
130
+ exp = self.fc_exp(x)
131
+ scale = self.fc_scale(x)
132
+
133
+ ret_dct = {
134
+ 'pitch': pitch,
135
+ 'yaw': yaw,
136
+ 'roll': roll,
137
+ 't': t,
138
+ 'exp': exp,
139
+ 'scale': scale,
140
+
141
+ 'kp': kp, # canonical keypoint
142
+ }
143
+
144
+ return ret_dct
145
+
146
+
147
+ def convnextv2_tiny(**kwargs):
148
+ model = ConvNeXtV2(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
149
+ return model
modules/live_portrait/dense_motion.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ The module that predicting a dense motion from sparse motion representation given by kp_source and kp_driving
5
+ """
6
+
7
+ from torch import nn
8
+ import torch.nn.functional as F
9
+ import torch
10
+ from .util import Hourglass, make_coordinate_grid, kp2gaussian
11
+
12
+
13
+ class DenseMotionNetwork(nn.Module):
14
+ def __init__(self, block_expansion, num_blocks, max_features, num_kp, feature_channel, reshape_depth, compress, estimate_occlusion_map=True):
15
+ super(DenseMotionNetwork, self).__init__()
16
+ self.hourglass = Hourglass(block_expansion=block_expansion, in_features=(num_kp+1)*(compress+1), max_features=max_features, num_blocks=num_blocks) # ~60+G
17
+
18
+ self.mask = nn.Conv3d(self.hourglass.out_filters, num_kp + 1, kernel_size=7, padding=3) # 65G! NOTE: computation cost is large
19
+ self.compress = nn.Conv3d(feature_channel, compress, kernel_size=1) # 0.8G
20
+ self.norm = nn.BatchNorm3d(compress, affine=True)
21
+ self.num_kp = num_kp
22
+ self.flag_estimate_occlusion_map = estimate_occlusion_map
23
+
24
+ if self.flag_estimate_occlusion_map:
25
+ self.occlusion = nn.Conv2d(self.hourglass.out_filters*reshape_depth, 1, kernel_size=7, padding=3)
26
+ else:
27
+ self.occlusion = None
28
+
29
+ def create_sparse_motions(self, feature, kp_driving, kp_source):
30
+ bs, _, d, h, w = feature.shape # (bs, 4, 16, 64, 64)
31
+ identity_grid = make_coordinate_grid((d, h, w), ref=kp_source) # (16, 64, 64, 3)
32
+ identity_grid = identity_grid.view(1, 1, d, h, w, 3) # (1, 1, d=16, h=64, w=64, 3)
33
+ coordinate_grid = identity_grid - kp_driving.view(bs, self.num_kp, 1, 1, 1, 3)
34
+
35
+ k = coordinate_grid.shape[1]
36
+
37
+ # NOTE: there lacks an one-order flow
38
+ driving_to_source = coordinate_grid + kp_source.view(bs, self.num_kp, 1, 1, 1, 3) # (bs, num_kp, d, h, w, 3)
39
+
40
+ # adding background feature
41
+ identity_grid = identity_grid.repeat(bs, 1, 1, 1, 1, 1)
42
+ sparse_motions = torch.cat([identity_grid, driving_to_source], dim=1) # (bs, 1+num_kp, d, h, w, 3)
43
+ return sparse_motions
44
+
45
+ def create_deformed_feature(self, feature, sparse_motions):
46
+ bs, _, d, h, w = feature.shape
47
+ feature_repeat = feature.unsqueeze(1).unsqueeze(1).repeat(1, self.num_kp+1, 1, 1, 1, 1, 1) # (bs, num_kp+1, 1, c, d, h, w)
48
+ feature_repeat = feature_repeat.view(bs * (self.num_kp+1), -1, d, h, w) # (bs*(num_kp+1), c, d, h, w)
49
+ sparse_motions = sparse_motions.view((bs * (self.num_kp+1), d, h, w, -1)) # (bs*(num_kp+1), d, h, w, 3)
50
+ sparse_deformed = F.grid_sample(feature_repeat, sparse_motions, align_corners=False)
51
+ sparse_deformed = sparse_deformed.view((bs, self.num_kp+1, -1, d, h, w)) # (bs, num_kp+1, c, d, h, w)
52
+
53
+ return sparse_deformed
54
+
55
+ def create_heatmap_representations(self, feature, kp_driving, kp_source):
56
+ spatial_size = feature.shape[3:] # (d=16, h=64, w=64)
57
+ gaussian_driving = kp2gaussian(kp_driving, spatial_size=spatial_size, kp_variance=0.01) # (bs, num_kp, d, h, w)
58
+ gaussian_source = kp2gaussian(kp_source, spatial_size=spatial_size, kp_variance=0.01) # (bs, num_kp, d, h, w)
59
+ heatmap = gaussian_driving - gaussian_source # (bs, num_kp, d, h, w)
60
+
61
+ # adding background feature
62
+ zeros = torch.zeros(heatmap.shape[0], 1, spatial_size[0], spatial_size[1], spatial_size[2]).type(heatmap.dtype).to(heatmap.device)
63
+ heatmap = torch.cat([zeros, heatmap], dim=1)
64
+ heatmap = heatmap.unsqueeze(2) # (bs, 1+num_kp, 1, d, h, w)
65
+ return heatmap
66
+
67
+ def forward(self, feature, kp_driving, kp_source):
68
+ bs, _, d, h, w = feature.shape # (bs, 32, 16, 64, 64)
69
+
70
+ feature = self.compress(feature) # (bs, 4, 16, 64, 64)
71
+ feature = self.norm(feature) # (bs, 4, 16, 64, 64)
72
+ feature = F.relu(feature) # (bs, 4, 16, 64, 64)
73
+
74
+ out_dict = dict()
75
+
76
+ # 1. deform 3d feature
77
+ sparse_motion = self.create_sparse_motions(feature, kp_driving, kp_source) # (bs, 1+num_kp, d, h, w, 3)
78
+ deformed_feature = self.create_deformed_feature(feature, sparse_motion) # (bs, 1+num_kp, c=4, d=16, h=64, w=64)
79
+
80
+ # 2. (bs, 1+num_kp, d, h, w)
81
+ heatmap = self.create_heatmap_representations(deformed_feature, kp_driving, kp_source) # (bs, 1+num_kp, 1, d, h, w)
82
+
83
+ input = torch.cat([heatmap, deformed_feature], dim=2) # (bs, 1+num_kp, c=5, d=16, h=64, w=64)
84
+ input = input.view(bs, -1, d, h, w) # (bs, (1+num_kp)*c=105, d=16, h=64, w=64)
85
+
86
+ prediction = self.hourglass(input)
87
+
88
+ mask = self.mask(prediction)
89
+ mask = F.softmax(mask, dim=1) # (bs, 1+num_kp, d=16, h=64, w=64)
90
+ out_dict['mask'] = mask
91
+ mask = mask.unsqueeze(2) # (bs, num_kp+1, 1, d, h, w)
92
+ sparse_motion = sparse_motion.permute(0, 1, 5, 2, 3, 4) # (bs, num_kp+1, 3, d, h, w)
93
+ deformation = (sparse_motion * mask).sum(dim=1) # (bs, 3, d, h, w) mask take effect in this place
94
+ deformation = deformation.permute(0, 2, 3, 4, 1) # (bs, d, h, w, 3)
95
+
96
+ out_dict['deformation'] = deformation
97
+
98
+ if self.flag_estimate_occlusion_map:
99
+ bs, _, d, h, w = prediction.shape
100
+ prediction_reshape = prediction.view(bs, -1, h, w)
101
+ occlusion_map = torch.sigmoid(self.occlusion(prediction_reshape)) # Bx1x64x64
102
+ out_dict['occlusion_map'] = occlusion_map
103
+
104
+ return out_dict
modules/live_portrait/motion_extractor.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ Motion extractor(M), which directly predicts the canonical keypoints, head pose and expression deformation of the input image
5
+ """
6
+
7
+ from torch import nn
8
+ import torch
9
+
10
+ from .convnextv2 import convnextv2_tiny
11
+ from .util import filter_state_dict
12
+
13
+ model_dict = {
14
+ 'convnextv2_tiny': convnextv2_tiny,
15
+ }
16
+
17
+
18
+ class MotionExtractor(nn.Module):
19
+ def __init__(self, **kwargs):
20
+ super(MotionExtractor, self).__init__()
21
+
22
+ # default is convnextv2_base
23
+ backbone = kwargs.get('backbone', 'convnextv2_tiny')
24
+ self.detector = model_dict.get(backbone)(**kwargs)
25
+
26
+ def load_pretrained(self, init_path: str):
27
+ if init_path not in (None, ''):
28
+ state_dict = torch.load(init_path, map_location=lambda storage, loc: storage)['model']
29
+ state_dict = filter_state_dict(state_dict, remove_name='head')
30
+ ret = self.detector.load_state_dict(state_dict, strict=False)
31
+ print(f'Load pretrained model from {init_path}, ret: {ret}')
32
+
33
+ def forward(self, x):
34
+ out = self.detector(x)
35
+ return out
modules/live_portrait/spade_generator.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ Spade decoder(G) defined in the paper, which input the warped feature to generate the animated image.
5
+ """
6
+
7
+ import torch
8
+ from torch import nn
9
+ import torch.nn.functional as F
10
+ from .util import SPADEResnetBlock
11
+
12
+
13
+ class SPADEDecoder(nn.Module):
14
+ def __init__(self, upscale=1, max_features=256, block_expansion=64, out_channels=64, num_down_blocks=2):
15
+ for i in range(num_down_blocks):
16
+ input_channels = min(max_features, block_expansion * (2 ** (i + 1)))
17
+ self.upscale = upscale
18
+ super().__init__()
19
+ norm_G = 'spadespectralinstance'
20
+ label_num_channels = input_channels # 256
21
+
22
+ self.fc = nn.Conv2d(input_channels, 2 * input_channels, 3, padding=1)
23
+ self.G_middle_0 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
24
+ self.G_middle_1 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
25
+ self.G_middle_2 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
26
+ self.G_middle_3 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
27
+ self.G_middle_4 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
28
+ self.G_middle_5 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
29
+ self.up_0 = SPADEResnetBlock(2 * input_channels, input_channels, norm_G, label_num_channels)
30
+ self.up_1 = SPADEResnetBlock(input_channels, out_channels, norm_G, label_num_channels)
31
+ self.up = nn.Upsample(scale_factor=2)
32
+
33
+ if self.upscale is None or self.upscale <= 1:
34
+ self.conv_img = nn.Conv2d(out_channels, 3, 3, padding=1)
35
+ else:
36
+ self.conv_img = nn.Sequential(
37
+ nn.Conv2d(out_channels, 3 * (2 * 2), kernel_size=3, padding=1),
38
+ nn.PixelShuffle(upscale_factor=2)
39
+ )
40
+
41
+ def forward(self, feature):
42
+ seg = feature # Bx256x64x64
43
+ x = self.fc(feature) # Bx512x64x64
44
+ x = self.G_middle_0(x, seg)
45
+ x = self.G_middle_1(x, seg)
46
+ x = self.G_middle_2(x, seg)
47
+ x = self.G_middle_3(x, seg)
48
+ x = self.G_middle_4(x, seg)
49
+ x = self.G_middle_5(x, seg)
50
+
51
+ x = self.up(x) # Bx512x64x64 -> Bx512x128x128
52
+ x = self.up_0(x, seg) # Bx512x128x128 -> Bx256x128x128
53
+ x = self.up(x) # Bx256x128x128 -> Bx256x256x256
54
+ x = self.up_1(x, seg) # Bx256x256x256 -> Bx64x256x256
55
+
56
+ x = self.conv_img(F.leaky_relu(x, 2e-1)) # Bx64x256x256 -> Bx3xHxW
57
+ x = torch.sigmoid(x) # Bx3xHxW
58
+
59
+ return x
modules/live_portrait/stitching_retargeting_network.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ Stitching module(S) and two retargeting live_portrait(R) defined in the paper.
5
+
6
+ - The stitching module pastes the animated portrait back into the original image space without pixel misalignment, such as in
7
+ the stitching region.
8
+
9
+ - The eyes retargeting module is designed to address the issue of incomplete eye closure during cross-id reenactment, especially
10
+ when a person with small eyes drives a person with larger eyes.
11
+
12
+ - The lip retargeting module is designed similarly to the eye retargeting module, and can also normalize the input by ensuring that
13
+ the lips are in a closed state, which facilitates better animation driving.
14
+ """
15
+ from torch import nn
16
+
17
+
18
+ class StitchingRetargetingNetwork(nn.Module):
19
+ def __init__(self, input_size, hidden_sizes, output_size):
20
+ super(StitchingRetargetingNetwork, self).__init__()
21
+ layers = []
22
+ for i in range(len(hidden_sizes)):
23
+ if i == 0:
24
+ layers.append(nn.Linear(input_size, hidden_sizes[i]))
25
+ else:
26
+ layers.append(nn.Linear(hidden_sizes[i - 1], hidden_sizes[i]))
27
+ layers.append(nn.ReLU(inplace=True))
28
+ layers.append(nn.Linear(hidden_sizes[-1], output_size))
29
+ self.mlp = nn.Sequential(*layers)
30
+
31
+ def initialize_weights_to_zero(self):
32
+ for m in self.modules():
33
+ if isinstance(m, nn.Linear):
34
+ nn.init.zeros_(m.weight)
35
+ nn.init.zeros_(m.bias)
36
+
37
+ def forward(self, x):
38
+ return self.mlp(x)
modules/live_portrait/util.py ADDED
@@ -0,0 +1,441 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ This file defines various neural network live_portrait and utility functions, including convolutional and residual blocks,
5
+ normalizations, and functions for spatial transformation and tensor manipulation.
6
+ """
7
+
8
+ from torch import nn
9
+ import torch.nn.functional as F
10
+ import torch
11
+ import torch.nn.utils.spectral_norm as spectral_norm
12
+ import math
13
+ import warnings
14
+
15
+
16
+ def kp2gaussian(kp, spatial_size, kp_variance):
17
+ """
18
+ Transform a keypoint into gaussian like representation
19
+ """
20
+ mean = kp
21
+
22
+ coordinate_grid = make_coordinate_grid(spatial_size, mean)
23
+ number_of_leading_dimensions = len(mean.shape) - 1
24
+ shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape
25
+ coordinate_grid = coordinate_grid.view(*shape)
26
+ repeats = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 1)
27
+ coordinate_grid = coordinate_grid.repeat(*repeats)
28
+
29
+ # Preprocess kp shape
30
+ shape = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 3)
31
+ mean = mean.view(*shape)
32
+
33
+ mean_sub = (coordinate_grid - mean)
34
+
35
+ out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance)
36
+
37
+ return out
38
+
39
+
40
+ def make_coordinate_grid(spatial_size, ref, **kwargs):
41
+ d, h, w = spatial_size
42
+ x = torch.arange(w).type(ref.dtype).to(ref.device)
43
+ y = torch.arange(h).type(ref.dtype).to(ref.device)
44
+ z = torch.arange(d).type(ref.dtype).to(ref.device)
45
+
46
+ # NOTE: must be right-down-in
47
+ x = (2 * (x / (w - 1)) - 1) # the x axis faces to the right
48
+ y = (2 * (y / (h - 1)) - 1) # the y axis faces to the bottom
49
+ z = (2 * (z / (d - 1)) - 1) # the z axis faces to the inner
50
+
51
+ yy = y.view(1, -1, 1).repeat(d, 1, w)
52
+ xx = x.view(1, 1, -1).repeat(d, h, 1)
53
+ zz = z.view(-1, 1, 1).repeat(1, h, w)
54
+
55
+ meshed = torch.cat([xx.unsqueeze_(3), yy.unsqueeze_(3), zz.unsqueeze_(3)], 3)
56
+
57
+ return meshed
58
+
59
+
60
+ class ConvT2d(nn.Module):
61
+ """
62
+ Upsampling block for use in decoder.
63
+ """
64
+
65
+ def __init__(self, in_features, out_features, kernel_size=3, stride=2, padding=1, output_padding=1):
66
+ super(ConvT2d, self).__init__()
67
+
68
+ self.convT = nn.ConvTranspose2d(in_features, out_features, kernel_size=kernel_size, stride=stride,
69
+ padding=padding, output_padding=output_padding)
70
+ self.norm = nn.InstanceNorm2d(out_features)
71
+
72
+ def forward(self, x):
73
+ out = self.convT(x)
74
+ out = self.norm(out)
75
+ out = F.leaky_relu(out)
76
+ return out
77
+
78
+
79
+ class ResBlock3d(nn.Module):
80
+ """
81
+ Res block, preserve spatial resolution.
82
+ """
83
+
84
+ def __init__(self, in_features, kernel_size, padding):
85
+ super(ResBlock3d, self).__init__()
86
+ self.conv1 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding)
87
+ self.conv2 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding)
88
+ self.norm1 = nn.BatchNorm3d(in_features, affine=True)
89
+ self.norm2 = nn.BatchNorm3d(in_features, affine=True)
90
+
91
+ def forward(self, x):
92
+ out = self.norm1(x)
93
+ out = F.relu(out)
94
+ out = self.conv1(out)
95
+ out = self.norm2(out)
96
+ out = F.relu(out)
97
+ out = self.conv2(out)
98
+ out += x
99
+ return out
100
+
101
+
102
+ class UpBlock3d(nn.Module):
103
+ """
104
+ Upsampling block for use in decoder.
105
+ """
106
+
107
+ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
108
+ super(UpBlock3d, self).__init__()
109
+
110
+ self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
111
+ padding=padding, groups=groups)
112
+ self.norm = nn.BatchNorm3d(out_features, affine=True)
113
+
114
+ def forward(self, x):
115
+ out = F.interpolate(x, scale_factor=(1, 2, 2))
116
+ out = self.conv(out)
117
+ out = self.norm(out)
118
+ out = F.relu(out)
119
+ return out
120
+
121
+
122
+ class DownBlock2d(nn.Module):
123
+ """
124
+ Downsampling block for use in encoder.
125
+ """
126
+
127
+ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
128
+ super(DownBlock2d, self).__init__()
129
+ self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups)
130
+ self.norm = nn.BatchNorm2d(out_features, affine=True)
131
+ self.pool = nn.AvgPool2d(kernel_size=(2, 2))
132
+
133
+ def forward(self, x):
134
+ out = self.conv(x)
135
+ out = self.norm(out)
136
+ out = F.relu(out)
137
+ out = self.pool(out)
138
+ return out
139
+
140
+
141
+ class DownBlock3d(nn.Module):
142
+ """
143
+ Downsampling block for use in encoder.
144
+ """
145
+
146
+ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
147
+ super(DownBlock3d, self).__init__()
148
+ '''
149
+ self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
150
+ padding=padding, groups=groups, stride=(1, 2, 2))
151
+ '''
152
+ self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
153
+ padding=padding, groups=groups)
154
+ self.norm = nn.BatchNorm3d(out_features, affine=True)
155
+ self.pool = nn.AvgPool3d(kernel_size=(1, 2, 2))
156
+
157
+ def forward(self, x):
158
+ out = self.conv(x)
159
+ out = self.norm(out)
160
+ out = F.relu(out)
161
+ out = self.pool(out)
162
+ return out
163
+
164
+
165
+ class SameBlock2d(nn.Module):
166
+ """
167
+ Simple block, preserve spatial resolution.
168
+ """
169
+
170
+ def __init__(self, in_features, out_features, groups=1, kernel_size=3, padding=1, lrelu=False):
171
+ super(SameBlock2d, self).__init__()
172
+ self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups)
173
+ self.norm = nn.BatchNorm2d(out_features, affine=True)
174
+ if lrelu:
175
+ self.ac = nn.LeakyReLU()
176
+ else:
177
+ self.ac = nn.ReLU()
178
+
179
+ def forward(self, x):
180
+ out = self.conv(x)
181
+ out = self.norm(out)
182
+ out = self.ac(out)
183
+ return out
184
+
185
+
186
+ class Encoder(nn.Module):
187
+ """
188
+ Hourglass Encoder
189
+ """
190
+
191
+ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
192
+ super(Encoder, self).__init__()
193
+
194
+ down_blocks = []
195
+ for i in range(num_blocks):
196
+ down_blocks.append(DownBlock3d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)), min(max_features, block_expansion * (2 ** (i + 1))), kernel_size=3, padding=1))
197
+ self.down_blocks = nn.ModuleList(down_blocks)
198
+
199
+ def forward(self, x):
200
+ outs = [x]
201
+ for down_block in self.down_blocks:
202
+ outs.append(down_block(outs[-1]))
203
+ return outs
204
+
205
+
206
+ class Decoder(nn.Module):
207
+ """
208
+ Hourglass Decoder
209
+ """
210
+
211
+ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
212
+ super(Decoder, self).__init__()
213
+
214
+ up_blocks = []
215
+
216
+ for i in range(num_blocks)[::-1]:
217
+ in_filters = (1 if i == num_blocks - 1 else 2) * min(max_features, block_expansion * (2 ** (i + 1)))
218
+ out_filters = min(max_features, block_expansion * (2 ** i))
219
+ up_blocks.append(UpBlock3d(in_filters, out_filters, kernel_size=3, padding=1))
220
+
221
+ self.up_blocks = nn.ModuleList(up_blocks)
222
+ self.out_filters = block_expansion + in_features
223
+
224
+ self.conv = nn.Conv3d(in_channels=self.out_filters, out_channels=self.out_filters, kernel_size=3, padding=1)
225
+ self.norm = nn.BatchNorm3d(self.out_filters, affine=True)
226
+
227
+ def forward(self, x):
228
+ out = x.pop()
229
+ for up_block in self.up_blocks:
230
+ out = up_block(out)
231
+ skip = x.pop()
232
+ out = torch.cat([out, skip], dim=1)
233
+ out = self.conv(out)
234
+ out = self.norm(out)
235
+ out = F.relu(out)
236
+ return out
237
+
238
+
239
+ class Hourglass(nn.Module):
240
+ """
241
+ Hourglass architecture.
242
+ """
243
+
244
+ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
245
+ super(Hourglass, self).__init__()
246
+ self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features)
247
+ self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features)
248
+ self.out_filters = self.decoder.out_filters
249
+
250
+ def forward(self, x):
251
+ return self.decoder(self.encoder(x))
252
+
253
+
254
+ class SPADE(nn.Module):
255
+ def __init__(self, norm_nc, label_nc):
256
+ super().__init__()
257
+
258
+ self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)
259
+ nhidden = 128
260
+
261
+ self.mlp_shared = nn.Sequential(
262
+ nn.Conv2d(label_nc, nhidden, kernel_size=3, padding=1),
263
+ nn.ReLU())
264
+ self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
265
+ self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
266
+
267
+ def forward(self, x, segmap):
268
+ normalized = self.param_free_norm(x)
269
+ segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest')
270
+ actv = self.mlp_shared(segmap)
271
+ gamma = self.mlp_gamma(actv)
272
+ beta = self.mlp_beta(actv)
273
+ out = normalized * (1 + gamma) + beta
274
+ return out
275
+
276
+
277
+ class SPADEResnetBlock(nn.Module):
278
+ def __init__(self, fin, fout, norm_G, label_nc, use_se=False, dilation=1):
279
+ super().__init__()
280
+ # Attributes
281
+ self.learned_shortcut = (fin != fout)
282
+ fmiddle = min(fin, fout)
283
+ self.use_se = use_se
284
+ # create conv layers
285
+ self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=dilation, dilation=dilation)
286
+ self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=dilation, dilation=dilation)
287
+ if self.learned_shortcut:
288
+ self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False)
289
+ # apply spectral norm if specified
290
+ if 'spectral' in norm_G:
291
+ self.conv_0 = spectral_norm(self.conv_0)
292
+ self.conv_1 = spectral_norm(self.conv_1)
293
+ if self.learned_shortcut:
294
+ self.conv_s = spectral_norm(self.conv_s)
295
+ # define normalization layers
296
+ self.norm_0 = SPADE(fin, label_nc)
297
+ self.norm_1 = SPADE(fmiddle, label_nc)
298
+ if self.learned_shortcut:
299
+ self.norm_s = SPADE(fin, label_nc)
300
+
301
+ def forward(self, x, seg1):
302
+ x_s = self.shortcut(x, seg1)
303
+ dx = self.conv_0(self.actvn(self.norm_0(x, seg1)))
304
+ dx = self.conv_1(self.actvn(self.norm_1(dx, seg1)))
305
+ out = x_s + dx
306
+ return out
307
+
308
+ def shortcut(self, x, seg1):
309
+ if self.learned_shortcut:
310
+ x_s = self.conv_s(self.norm_s(x, seg1))
311
+ else:
312
+ x_s = x
313
+ return x_s
314
+
315
+ def actvn(self, x):
316
+ return F.leaky_relu(x, 2e-1)
317
+
318
+
319
+ def filter_state_dict(state_dict, remove_name='fc'):
320
+ new_state_dict = {}
321
+ for key in state_dict:
322
+ if remove_name in key:
323
+ continue
324
+ new_state_dict[key] = state_dict[key]
325
+ return new_state_dict
326
+
327
+
328
+ class GRN(nn.Module):
329
+ """ GRN (Global Response Normalization) layer
330
+ """
331
+
332
+ def __init__(self, dim):
333
+ super().__init__()
334
+ self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
335
+ self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))
336
+
337
+ def forward(self, x):
338
+ Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
339
+ Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
340
+ return self.gamma * (x * Nx) + self.beta + x
341
+
342
+
343
+ class LayerNorm(nn.Module):
344
+ r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
345
+ The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
346
+ shape (batch_size, height, width, channels) while channels_first corresponds to inputs
347
+ with shape (batch_size, channels, height, width).
348
+ """
349
+
350
+ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
351
+ super().__init__()
352
+ self.weight = nn.Parameter(torch.ones(normalized_shape))
353
+ self.bias = nn.Parameter(torch.zeros(normalized_shape))
354
+ self.eps = eps
355
+ self.data_format = data_format
356
+ if self.data_format not in ["channels_last", "channels_first"]:
357
+ raise NotImplementedError
358
+ self.normalized_shape = (normalized_shape, )
359
+
360
+ def forward(self, x):
361
+ if self.data_format == "channels_last":
362
+ return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
363
+ elif self.data_format == "channels_first":
364
+ u = x.mean(1, keepdim=True)
365
+ s = (x - u).pow(2).mean(1, keepdim=True)
366
+ x = (x - u) / torch.sqrt(s + self.eps)
367
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
368
+ return x
369
+
370
+
371
+ def _no_grad_trunc_normal_(tensor, mean, std, a, b):
372
+ # Cut & paste from PyTorch official master until it's in a few official releases - RW
373
+ # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
374
+ def norm_cdf(x):
375
+ # Computes standard normal cumulative distribution function
376
+ return (1. + math.erf(x / math.sqrt(2.))) / 2.
377
+
378
+ if (mean < a - 2 * std) or (mean > b + 2 * std):
379
+ warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
380
+ "The distribution of values may be incorrect.",
381
+ stacklevel=2)
382
+
383
+ with torch.no_grad():
384
+ # Values are generated by using a truncated uniform distribution and
385
+ # then using the inverse CDF for the normal distribution.
386
+ # Get upper and lower cdf values
387
+ l = norm_cdf((a - mean) / std)
388
+ u = norm_cdf((b - mean) / std)
389
+
390
+ # Uniformly fill tensor with values from [l, u], then translate to
391
+ # [2l-1, 2u-1].
392
+ tensor.uniform_(2 * l - 1, 2 * u - 1)
393
+
394
+ # Use inverse cdf transform for normal distribution to get truncated
395
+ # standard normal
396
+ tensor.erfinv_()
397
+
398
+ # Transform to proper mean, std
399
+ tensor.mul_(std * math.sqrt(2.))
400
+ tensor.add_(mean)
401
+
402
+ # Clamp to ensure it's in the proper range
403
+ tensor.clamp_(min=a, max=b)
404
+ return tensor
405
+
406
+
407
+ def drop_path(x, drop_prob=0., training=False, scale_by_keep=True):
408
+ """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
409
+
410
+ This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
411
+ the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
412
+ See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
413
+ changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
414
+ 'survival rate' as the argument.
415
+
416
+ """
417
+ if drop_prob == 0. or not training:
418
+ return x
419
+ keep_prob = 1 - drop_prob
420
+ shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
421
+ random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
422
+ if keep_prob > 0.0 and scale_by_keep:
423
+ random_tensor.div_(keep_prob)
424
+ return x * random_tensor
425
+
426
+
427
+ class DropPath(nn.Module):
428
+ """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
429
+ """
430
+
431
+ def __init__(self, drop_prob=None, scale_by_keep=True):
432
+ super(DropPath, self).__init__()
433
+ self.drop_prob = drop_prob
434
+ self.scale_by_keep = scale_by_keep
435
+
436
+ def forward(self, x):
437
+ return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
438
+
439
+
440
+ def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
441
+ return _no_grad_trunc_normal_(tensor, mean, std, a, b)
modules/live_portrait/warping_network.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ Warping field estimator(W) defined in the paper, which generates a warping field using the implicit
5
+ keypoint representations x_s and x_d, and employs this flow field to warp the source feature volume f_s.
6
+ """
7
+
8
+ from torch import nn
9
+ import torch.nn.functional as F
10
+ from .util import SameBlock2d
11
+ from .dense_motion import DenseMotionNetwork
12
+
13
+
14
+ class WarpingNetwork(nn.Module):
15
+ def __init__(
16
+ self,
17
+ num_kp,
18
+ block_expansion,
19
+ max_features,
20
+ num_down_blocks,
21
+ reshape_channel,
22
+ estimate_occlusion_map=False,
23
+ dense_motion_params=None,
24
+ **kwargs
25
+ ):
26
+ super(WarpingNetwork, self).__init__()
27
+
28
+ self.upscale = kwargs.get('upscale', 1)
29
+ self.flag_use_occlusion_map = kwargs.get('flag_use_occlusion_map', True)
30
+
31
+ if dense_motion_params is not None:
32
+ self.dense_motion_network = DenseMotionNetwork(
33
+ num_kp=num_kp,
34
+ feature_channel=reshape_channel,
35
+ estimate_occlusion_map=estimate_occlusion_map,
36
+ **dense_motion_params
37
+ )
38
+ else:
39
+ self.dense_motion_network = None
40
+
41
+ self.third = SameBlock2d(max_features, block_expansion * (2 ** num_down_blocks), kernel_size=(3, 3), padding=(1, 1), lrelu=True)
42
+ self.fourth = nn.Conv2d(in_channels=block_expansion * (2 ** num_down_blocks), out_channels=block_expansion * (2 ** num_down_blocks), kernel_size=1, stride=1)
43
+
44
+ self.estimate_occlusion_map = estimate_occlusion_map
45
+
46
+ def deform_input(self, inp, deformation):
47
+ return F.grid_sample(inp, deformation, align_corners=False)
48
+
49
+ def forward(self, feature_3d, kp_driving, kp_source):
50
+ if self.dense_motion_network is not None:
51
+ # Feature warper, Transforming feature representation according to deformation and occlusion
52
+ dense_motion = self.dense_motion_network(
53
+ feature=feature_3d, kp_driving=kp_driving, kp_source=kp_source
54
+ )
55
+ if 'occlusion_map' in dense_motion:
56
+ occlusion_map = dense_motion['occlusion_map'] # Bx1x64x64
57
+ else:
58
+ occlusion_map = None
59
+
60
+ deformation = dense_motion['deformation'] # Bx16x64x64x3
61
+ out = self.deform_input(feature_3d, deformation) # Bx32x16x64x64
62
+
63
+ bs, c, d, h, w = out.shape # Bx32x16x64x64
64
+ out = out.view(bs, c * d, h, w) # -> Bx512x64x64
65
+ out = self.third(out) # -> Bx256x64x64
66
+ out = self.fourth(out) # -> Bx256x64x64
67
+
68
+ if self.flag_use_occlusion_map and (occlusion_map is not None):
69
+ out = out * occlusion_map
70
+
71
+ ret_dct = {
72
+ 'occlusion_map': occlusion_map,
73
+ 'deformation': deformation,
74
+ 'out': out,
75
+ }
76
+
77
+ return ret_dct
modules/live_portrait_wrapper.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+
4
+ from .utils.helper import concat_feat
5
+ from .utils.camera import headpose_pred_to_degree, get_rotation_matrix
6
+ from .config.inference_config import InferenceConfig
7
+
8
+ class LivePortraitWrapper(object):
9
+
10
+ def __init__(self, cfg: InferenceConfig, appearance_feature_extractor, motion_extractor,
11
+ warping_module, spade_generator, stitching_retargeting_module):
12
+
13
+ self.appearance_feature_extractor = appearance_feature_extractor
14
+ self.motion_extractor = motion_extractor
15
+ self.warping_module = warping_module
16
+ self.spade_generator = spade_generator
17
+ self.stitching_retargeting_module = stitching_retargeting_module
18
+
19
+ self.cfg = cfg
20
+
21
+ def extract_feature_3d(self, x: torch.Tensor) -> torch.Tensor:
22
+ """ get the appearance feature of the image by F
23
+ x: Bx3xHxW, normalized to 0~1
24
+ """
25
+ with torch.no_grad():
26
+ feature_3d = self.appearance_feature_extractor(x)
27
+
28
+ return feature_3d.float()
29
+
30
+ def get_kp_info(self, x: torch.Tensor, **kwargs) -> dict:
31
+ """ get the implicit keypoint information
32
+ x: Bx3xHxW, normalized to 0~1
33
+ flag_refine_info: whether to trandform the pose to degrees and the dimention of the reshape
34
+ return: A dict contains keys: 'pitch', 'yaw', 'roll', 't', 'exp', 'scale', 'kp'
35
+ """
36
+ with torch.no_grad():
37
+ kp_info = self.motion_extractor(x)
38
+
39
+ if self.cfg.flag_use_half_precision:
40
+ # float the dict
41
+ for k, v in kp_info.items():
42
+ if isinstance(v, torch.Tensor):
43
+ kp_info[k] = v.float()
44
+
45
+ flag_refine_info: bool = kwargs.get('flag_refine_info', True)
46
+ if flag_refine_info:
47
+ bs = kp_info['kp'].shape[0]
48
+ kp_info['pitch'] = headpose_pred_to_degree(kp_info['pitch'])[:, None] # Bx1
49
+ kp_info['yaw'] = headpose_pred_to_degree(kp_info['yaw'])[:, None] # Bx1
50
+ kp_info['roll'] = headpose_pred_to_degree(kp_info['roll'])[:, None] # Bx1
51
+ kp_info['kp'] = kp_info['kp'].reshape(bs, -1, 3) # BxNx3
52
+ kp_info['exp'] = kp_info['exp'].reshape(bs, -1, 3) # BxNx3
53
+
54
+ return kp_info
55
+ def transform_keypoint(self, kp_info: dict):
56
+ """
57
+ transform the implicit keypoints with the pose, shift, and expression deformation
58
+ kp: BxNx3
59
+ """
60
+ kp = kp_info['kp'] # (bs, k, 3)
61
+ pitch, yaw, roll = kp_info['pitch'], kp_info['yaw'], kp_info['roll']
62
+
63
+ t, exp = kp_info['t'], kp_info['exp']
64
+ scale = kp_info['scale']
65
+
66
+ pitch = headpose_pred_to_degree(pitch)
67
+ yaw = headpose_pred_to_degree(yaw)
68
+ roll = headpose_pred_to_degree(roll)
69
+
70
+ bs = kp.shape[0]
71
+ if kp.ndim == 2:
72
+ num_kp = kp.shape[1] // 3 # Bx(num_kpx3)
73
+ else:
74
+ num_kp = kp.shape[1] # Bxnum_kpx3
75
+
76
+ rot_mat = get_rotation_matrix(pitch, yaw, roll) # (bs, 3, 3)
77
+
78
+ # Eqn.2: s * (R * x_c,s + exp) + t
79
+ kp_transformed = kp.view(bs, num_kp, 3) @ rot_mat + exp.view(bs, num_kp, 3)
80
+ kp_transformed *= scale[..., None] # (bs, k, 3) * (bs, 1, 1) = (bs, k, 3)
81
+ kp_transformed[:, :, 0:2] += t[:, None, 0:2] # remove z, only apply tx ty
82
+
83
+ return kp_transformed
84
+
85
+ def stitch(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
86
+ """
87
+ kp_source: BxNx3
88
+ kp_driving: BxNx3
89
+ Return: Bx(3*num_kp+2)
90
+ """
91
+ feat_stiching = concat_feat(kp_source, kp_driving)
92
+
93
+ with torch.no_grad():
94
+ delta = self.stitching_retargeting_module['stitching'](feat_stiching)
95
+
96
+ return delta
97
+
98
+ def stitching(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
99
+ """ conduct the stitching
100
+ kp_source: Bxnum_kpx3
101
+ kp_driving: Bxnum_kpx3
102
+ """
103
+
104
+ if self.stitching_retargeting_module is not None:
105
+
106
+ bs, num_kp = kp_source.shape[:2]
107
+
108
+ kp_driving_new = kp_driving.clone()
109
+ delta = self.stitch(kp_source, kp_driving_new)
110
+
111
+ delta_exp = delta[..., :3*num_kp].reshape(bs, num_kp, 3) # 1x20x3
112
+ delta_tx_ty = delta[..., 3*num_kp:3*num_kp+2].reshape(bs, 1, 2) # 1x1x2
113
+
114
+ kp_driving_new += delta_exp
115
+ kp_driving_new[..., :2] += delta_tx_ty
116
+
117
+ return kp_driving_new
118
+
119
+ return kp_driving
120
+
121
+ def warp_decode(self, feature_3d: torch.Tensor, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
122
+ """ get the image after the warping of the implicit keypoints
123
+ feature_3d: Bx32x16x64x64, feature volume
124
+ kp_source: BxNx3
125
+ kp_driving: BxNx3
126
+ """
127
+ # The line 18 in Algorithm 1: D(W(f_s; x_s, x′_d,i))
128
+ with torch.no_grad():
129
+ # get decoder input
130
+ ret_dct = self.warping_module(feature_3d, kp_source=kp_source, kp_driving=kp_driving)
131
+ # decode
132
+ ret_dct['out'] = self.spade_generator(feature=ret_dct['out'])
133
+
134
+ # float the dict
135
+ if self.cfg.flag_use_half_precision:
136
+ for k, v in ret_dct.items():
137
+ if isinstance(v, torch.Tensor):
138
+ ret_dct[k] = v.float()
139
+
140
+ return ret_dct
141
+
142
+ def parse_output(self, out: torch.Tensor) -> np.ndarray:
143
+ """ construct the output as standard
144
+ return: 1xHxWx3, uint8
145
+ """
146
+ out = np.transpose(out.data.cpu().numpy(), [0, 2, 3, 1]) # 1x3xHxW -> 1xHxWx3
147
+ out = np.clip(out, 0, 1) # clip to 0~1
148
+ out = np.clip(out * 255, 0, 255).astype(np.uint8) # 0~1 -> 0~255
149
+
150
+ return out
modules/utils/__init__.py ADDED
File without changes
modules/utils/camera.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ functions for processing and transforming 3D facial keypoints
5
+ """
6
+
7
+ import numpy as np
8
+ import torch
9
+ import torch.nn.functional as F
10
+
11
+ PI = np.pi
12
+
13
+
14
+ def headpose_pred_to_degree(pred):
15
+ """
16
+ pred: (bs, 66) or (bs, 1) or others
17
+ """
18
+ if pred.ndim > 1 and pred.shape[1] == 66:
19
+ # NOTE: note that the average is modified to 97.5
20
+ device = pred.device
21
+ idx_tensor = [idx for idx in range(0, 66)]
22
+ idx_tensor = torch.FloatTensor(idx_tensor).to(device)
23
+ pred = F.softmax(pred, dim=1)
24
+ degree = torch.sum(pred*idx_tensor, axis=1) * 3 - 97.5
25
+
26
+ return degree
27
+
28
+ return pred
29
+
30
+
31
+ def get_rotation_matrix(pitch_, yaw_, roll_):
32
+ """ the input is in degree
33
+ """
34
+ # calculate the rotation matrix: vps @ rot
35
+
36
+ # transform to radian
37
+ pitch = pitch_ / 180 * PI
38
+ yaw = yaw_ / 180 * PI
39
+ roll = roll_ / 180 * PI
40
+
41
+ device = pitch.device
42
+
43
+ if pitch.ndim == 1:
44
+ pitch = pitch.unsqueeze(1)
45
+ if yaw.ndim == 1:
46
+ yaw = yaw.unsqueeze(1)
47
+ if roll.ndim == 1:
48
+ roll = roll.unsqueeze(1)
49
+
50
+ # calculate the euler matrix
51
+ bs = pitch.shape[0]
52
+ ones = torch.ones([bs, 1]).to(device)
53
+ zeros = torch.zeros([bs, 1]).to(device)
54
+ x, y, z = pitch, yaw, roll
55
+
56
+ rot_x = torch.cat([
57
+ ones, zeros, zeros,
58
+ zeros, torch.cos(x), -torch.sin(x),
59
+ zeros, torch.sin(x), torch.cos(x)
60
+ ], dim=1).reshape([bs, 3, 3])
61
+
62
+ rot_y = torch.cat([
63
+ torch.cos(y), zeros, torch.sin(y),
64
+ zeros, ones, zeros,
65
+ -torch.sin(y), zeros, torch.cos(y)
66
+ ], dim=1).reshape([bs, 3, 3])
67
+
68
+ rot_z = torch.cat([
69
+ torch.cos(z), -torch.sin(z), zeros,
70
+ torch.sin(z), torch.cos(z), zeros,
71
+ zeros, zeros, ones
72
+ ], dim=1).reshape([bs, 3, 3])
73
+
74
+ rot = rot_z @ rot_y @ rot_x
75
+ return rot.permute(0, 2, 1) # transpose
modules/utils/face_analysis_diy.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ face detectoin and alignment using InsightFace
5
+ """
6
+
7
+ import numpy as np
8
+ from .rprint import rlog as log
9
+ from insightface.app import FaceAnalysis
10
+ from insightface.app.common import Face
11
+ from .timer import Timer
12
+
13
+
14
+ def sort_by_direction(faces, direction: str = 'large-small', face_center=None):
15
+ if len(faces) <= 0:
16
+ return faces
17
+ if direction == 'left-right':
18
+ return sorted(faces, key=lambda face: face['bbox'][0])
19
+ if direction == 'right-left':
20
+ return sorted(faces, key=lambda face: face['bbox'][0], reverse=True)
21
+ if direction == 'top-bottom':
22
+ return sorted(faces, key=lambda face: face['bbox'][1])
23
+ if direction == 'bottom-top':
24
+ return sorted(faces, key=lambda face: face['bbox'][1], reverse=True)
25
+ if direction == 'small-large':
26
+ return sorted(faces, key=lambda face: (face['bbox'][2] - face['bbox'][0]) * (face['bbox'][3] - face['bbox'][1]))
27
+ if direction == 'large-small':
28
+ return sorted(faces, key=lambda face: (face['bbox'][2] - face['bbox'][0]) * (face['bbox'][3] - face['bbox'][1]), reverse=True)
29
+ if direction == 'distance-from-retarget-face':
30
+ return sorted(faces, key=lambda face: (((face['bbox'][2]+face['bbox'][0])/2-face_center[0])**2+((face['bbox'][3]+face['bbox'][1])/2-face_center[1])**2)**0.5)
31
+ return faces
32
+
33
+
34
+ class FaceAnalysisDIY(FaceAnalysis):
35
+ def __init__(self, name='buffalo_l', root='~/.insightface', allowed_modules=None, **kwargs):
36
+ super().__init__(name=name, root=root, allowed_modules=allowed_modules, **kwargs)
37
+
38
+ self.timer = Timer()
39
+
40
+ def get(self, img_bgr, **kwargs):
41
+ max_num = kwargs.get('max_num', 0) # the number of the detected faces, 0 means no limit
42
+ flag_do_landmark_2d_106 = kwargs.get('flag_do_landmark_2d_106', True) # whether to do 106-point detection
43
+ direction = kwargs.get('direction', 'large-small') # sorting direction
44
+ face_center = None
45
+
46
+ bboxes, kpss = self.det_model.detect(img_bgr, max_num=max_num, metric='default')
47
+ if bboxes.shape[0] == 0:
48
+ return []
49
+ ret = []
50
+ for i in range(bboxes.shape[0]):
51
+ bbox = bboxes[i, 0:4]
52
+ det_score = bboxes[i, 4]
53
+ kps = None
54
+ if kpss is not None:
55
+ kps = kpss[i]
56
+ face = Face(bbox=bbox, kps=kps, det_score=det_score)
57
+ for taskname, model in self.models.items():
58
+ if taskname == 'detection':
59
+ continue
60
+
61
+ if (not flag_do_landmark_2d_106) and taskname == 'landmark_2d_106':
62
+ continue
63
+
64
+ # print(f'taskname: {taskname}')
65
+ model.get(img_bgr, face)
66
+ ret.append(face)
67
+
68
+ ret = sort_by_direction(ret, direction, face_center)
69
+ return ret
70
+
71
+ def warmup(self):
72
+ self.timer.tic()
73
+
74
+ img_bgr = np.zeros((512, 512, 3), dtype=np.uint8)
75
+ self.get(img_bgr)
76
+
77
+ elapse = self.timer.toc()
78
+ log(f'FaceAnalysisDIY warmup time: {elapse:.3f}s')
modules/utils/helper.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ utility functions and classes to handle feature extraction and model loading
5
+ """
6
+
7
+ import os
8
+ import os.path as osp
9
+ import cv2
10
+ import torch
11
+ import yaml
12
+ from rich.console import Console
13
+ from collections import OrderedDict
14
+
15
+ from ..live_portrait.spade_generator import SPADEDecoder
16
+ from ..live_portrait.warping_network import WarpingNetwork
17
+ from ..live_portrait.motion_extractor import MotionExtractor
18
+ from ..live_portrait.appearance_feature_extractor import AppearanceFeatureExtractor
19
+ from ..live_portrait.stitching_retargeting_network import StitchingRetargetingNetwork
20
+ from .rprint import rlog as log
21
+
22
+
23
+ def suffix(filename):
24
+ """a.jpg -> jpg"""
25
+ pos = filename.rfind(".")
26
+ if pos == -1:
27
+ return ""
28
+ return filename[pos + 1:]
29
+
30
+
31
+ def prefix(filename):
32
+ """a.jpg -> a"""
33
+ pos = filename.rfind(".")
34
+ if pos == -1:
35
+ return filename
36
+ return filename[:pos]
37
+
38
+
39
+ def basename(filename):
40
+ """a/b/c.jpg -> c"""
41
+ return prefix(osp.basename(filename))
42
+
43
+
44
+ def is_video(file_path):
45
+ if file_path.lower().endswith((".mp4", ".mov", ".avi", ".webm")) or osp.isdir(file_path):
46
+ return True
47
+ return False
48
+
49
+ def is_template(file_path):
50
+ if file_path.endswith(".pkl"):
51
+ return True
52
+ return False
53
+
54
+
55
+ def mkdir(d, log=False):
56
+ # return self-assined `d`, for one line code
57
+ if not osp.exists(d):
58
+ os.makedirs(d, exist_ok=True)
59
+ if log:
60
+ print(f"Make dir: {d}")
61
+ return d
62
+
63
+
64
+ def squeeze_tensor_to_numpy(tensor):
65
+ out = tensor.data.squeeze(0).cpu().numpy()
66
+ return out
67
+
68
+
69
+ def dct2cuda(dct: dict, device_id: int):
70
+ for key in dct:
71
+ dct[key] = torch.tensor(dct[key]).cuda(device_id)
72
+ return dct
73
+
74
+
75
+ def concat_feat(kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
76
+ """
77
+ kp_source: (bs, k, 3)
78
+ kp_driving: (bs, k, 3)
79
+ Return: (bs, 2k*3)
80
+ """
81
+ bs_src = kp_source.shape[0]
82
+ bs_dri = kp_driving.shape[0]
83
+ assert bs_src == bs_dri, 'batch size must be equal'
84
+
85
+ feat = torch.cat([kp_source.view(bs_src, -1), kp_driving.view(bs_dri, -1)], dim=1)
86
+ return feat
87
+
88
+
89
+ # get coefficients of Eqn. 7
90
+ def calculate_transformation(config, s_kp_info, t_0_kp_info, t_i_kp_info, R_s, R_t_0, R_t_i):
91
+ if config.relative:
92
+ new_rotation = (R_t_i @ R_t_0.permute(0, 2, 1)) @ R_s
93
+ new_expression = s_kp_info['exp'] + (t_i_kp_info['exp'] - t_0_kp_info['exp'])
94
+ else:
95
+ new_rotation = R_t_i
96
+ new_expression = t_i_kp_info['exp']
97
+ new_translation = s_kp_info['t'] + (t_i_kp_info['t'] - t_0_kp_info['t'])
98
+ new_translation[..., 2].fill_(0) # Keep the z-axis unchanged
99
+ new_scale = s_kp_info['scale'] * (t_i_kp_info['scale'] / t_0_kp_info['scale'])
100
+ return new_rotation, new_expression, new_translation, new_scale
101
+
102
+ def load_description(fp):
103
+ with open(fp, 'r', encoding='utf-8') as f:
104
+ content = f.read()
105
+ return content
106
+
107
+
108
+ def resize_to_limit(img, max_dim=1280, n=2):
109
+ h, w = img.shape[:2]
110
+ if max_dim > 0 and max(h, w) > max_dim:
111
+ if h > w:
112
+ new_h = max_dim
113
+ new_w = int(w * (max_dim / h))
114
+ else:
115
+ new_w = max_dim
116
+ new_h = int(h * (max_dim / w))
117
+ img = cv2.resize(img, (new_w, new_h))
118
+ n = max(n, 1)
119
+ new_h = img.shape[0] - (img.shape[0] % n)
120
+ new_w = img.shape[1] - (img.shape[1] % n)
121
+ if new_h == 0 or new_w == 0:
122
+ return img
123
+ if new_h != img.shape[0] or new_w != img.shape[1]:
124
+ img = img[:new_h, :new_w]
125
+ return img
126
+
127
+
128
+ def load_yaml(file_path):
129
+ with open(file_path, 'r') as file:
130
+ data = yaml.safe_load(file)
131
+ return data
modules/utils/image_helper.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image
2
+ import torch
3
+ import numpy as np
4
+
5
+
6
+ class PreparedSrcImg:
7
+ def __init__(self, src_rgb, crop_trans_m, x_s_info, f_s_user, x_s_user, mask_ori):
8
+ self.src_rgb = src_rgb
9
+ self.crop_trans_m = crop_trans_m
10
+ self.x_s_info = x_s_info
11
+ self.f_s_user = f_s_user
12
+ self.x_s_user = x_s_user
13
+ self.mask_ori = mask_ori
14
+
15
+
16
+ def tensor2pil(image):
17
+ return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
18
+
19
+
20
+ def pil2tensor(image):
21
+ return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
22
+
23
+
24
+ def rgb_crop(rgb, region):
25
+ return rgb[region[1]:region[3], region[0]:region[2]]
26
+
27
+
28
+ def rgb_crop_batch(rgbs, region):
29
+ return rgbs[:, region[1]:region[3], region[0]:region[2]]
30
+
31
+
32
+ def get_rgb_size(rgb):
33
+ return rgb.shape[1], rgb.shape[0]
34
+
35
+
36
+ def create_transform_matrix(x, y, s_x, s_y):
37
+ return np.float32([[s_x, 0, x], [0, s_y, y]])
38
+
39
+
40
+ def calc_crop_limit(center, img_size, crop_size):
41
+ pos = center - crop_size / 2
42
+ if pos < 0:
43
+ crop_size += pos * 2
44
+ pos = 0
45
+
46
+ pos2 = pos + crop_size
47
+
48
+ if img_size < pos2:
49
+ crop_size -= (pos2 - img_size) * 2
50
+ pos2 = img_size
51
+ pos = pos2 - crop_size
52
+
53
+ return pos, pos2, crop_size
modules/utils/io.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ import os
4
+ from glob import glob
5
+ import os.path as osp
6
+ import imageio
7
+ import numpy as np
8
+ import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
9
+
10
+
11
+ def load_image_rgb(image_path: str):
12
+ if not osp.exists(image_path):
13
+ raise FileNotFoundError(f"Image not found: {image_path}")
14
+ img = cv2.imread(image_path, cv2.IMREAD_COLOR)
15
+ return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
16
+
17
+
18
+ def load_driving_info(driving_info):
19
+ driving_video_ori = []
20
+
21
+ def load_images_from_directory(directory):
22
+ image_paths = sorted(glob(osp.join(directory, '*.png')) + glob(osp.join(directory, '*.jpg')))
23
+ return [load_image_rgb(im_path) for im_path in image_paths]
24
+
25
+ def load_images_from_video(file_path):
26
+ reader = imageio.get_reader(file_path)
27
+ return [image for idx, image in enumerate(reader)]
28
+
29
+ if osp.isdir(driving_info):
30
+ driving_video_ori = load_images_from_directory(driving_info)
31
+ elif osp.isfile(driving_info):
32
+ driving_video_ori = load_images_from_video(driving_info)
33
+
34
+ return driving_video_ori
35
+
36
+
37
+ def contiguous(obj):
38
+ if not obj.flags.c_contiguous:
39
+ obj = obj.copy(order="C")
40
+ return obj
41
+
42
+
43
+ def _resize_to_limit(img: np.ndarray, max_dim=1920, n=2):
44
+ """
45
+ ajust the size of the image so that the maximum dimension does not exceed max_dim, and the width and the height of the image are multiples of n.
46
+ :param img: the image to be processed.
47
+ :param max_dim: the maximum dimension constraint.
48
+ :param n: the number that needs to be multiples of.
49
+ :return: the adjusted image.
50
+ """
51
+ h, w = img.shape[:2]
52
+
53
+ # ajust the size of the image according to the maximum dimension
54
+ if max_dim > 0 and max(h, w) > max_dim:
55
+ if h > w:
56
+ new_h = max_dim
57
+ new_w = int(w * (max_dim / h))
58
+ else:
59
+ new_w = max_dim
60
+ new_h = int(h * (max_dim / w))
61
+ img = cv2.resize(img, (new_w, new_h))
62
+
63
+ # ensure that the image dimensions are multiples of n
64
+ n = max(n, 1)
65
+ new_h = img.shape[0] - (img.shape[0] % n)
66
+ new_w = img.shape[1] - (img.shape[1] % n)
67
+
68
+ if new_h == 0 or new_w == 0:
69
+ # when the width or height is less than n, no need to process
70
+ return img
71
+
72
+ if new_h != img.shape[0] or new_w != img.shape[1]:
73
+ img = img[:new_h, :new_w]
74
+
75
+ return img
76
+
77
+
78
+ def load_img_online(obj, mode="bgr", **kwargs):
79
+ max_dim = kwargs.get("max_dim", 1920)
80
+ n = kwargs.get("n", 2)
81
+ if isinstance(obj, str):
82
+ if mode.lower() == "gray":
83
+ img = cv2.imread(obj, cv2.IMREAD_GRAYSCALE)
84
+ else:
85
+ img = cv2.imread(obj, cv2.IMREAD_COLOR)
86
+ else:
87
+ img = obj
88
+
89
+ # Resize image to satisfy constraints
90
+ img = _resize_to_limit(img, max_dim=max_dim, n=n)
91
+
92
+ if mode.lower() == "bgr":
93
+ return contiguous(img)
94
+ elif mode.lower() == "rgb":
95
+ return contiguous(img[..., ::-1])
96
+ else:
97
+ raise Exception(f"Unknown mode {mode}")
modules/utils/resources/mask_template.png ADDED
modules/utils/rprint.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ custom print and log functions
5
+ """
6
+
7
+ __all__ = ['rprint', 'rlog']
8
+
9
+ try:
10
+ from rich.console import Console
11
+ console = Console()
12
+ rprint = console.print
13
+ rlog = console.log
14
+ except:
15
+ rprint = print
16
+ rlog = print
modules/utils/timer.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ tools to measure elapsed time
5
+ """
6
+
7
+ import time
8
+
9
+ class Timer(object):
10
+ """A simple timer."""
11
+
12
+ def __init__(self):
13
+ self.total_time = 0.
14
+ self.calls = 0
15
+ self.start_time = 0.
16
+ self.diff = 0.
17
+
18
+ def tic(self):
19
+ # using time.time instead of time.clock because time time.clock
20
+ # does not normalize for multithreading
21
+ self.start_time = time.time()
22
+
23
+ def toc(self, average=True):
24
+ self.diff = time.time() - self.start_time
25
+ return self.diff
26
+
27
+ def clear(self):
28
+ self.start_time = 0.
29
+ self.diff = 0.
modules/utils/video.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ functions for processing video
5
+ """
6
+
7
+ import os.path as osp
8
+ import numpy as np
9
+ import subprocess
10
+ import imageio
11
+ import cv2
12
+
13
+ # from rich.progress import track
14
+ from .helper import prefix
15
+ from .rprint import rprint as print
16
+
17
+
18
+ def exec_cmd(cmd):
19
+ subprocess.run(cmd, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
20
+
21
+
22
+ def images2video(images, wfp, **kwargs):
23
+ fps = kwargs.get('fps', 30)
24
+ video_format = kwargs.get('format', 'mp4') # default is mp4 format
25
+ codec = kwargs.get('codec', 'libx264') # default is libx264 encoding
26
+ quality = kwargs.get('quality') # video quality
27
+ pixelformat = kwargs.get('pixelformat', 'yuv420p') # video pixel format
28
+ image_mode = kwargs.get('image_mode', 'rgb')
29
+ macro_block_size = kwargs.get('macro_block_size', 2)
30
+ ffmpeg_params = ['-crf', str(kwargs.get('crf', 18))]
31
+
32
+ writer = imageio.get_writer(
33
+ wfp, fps=fps, format=video_format,
34
+ codec=codec, quality=quality, ffmpeg_params=ffmpeg_params, pixelformat=pixelformat, macro_block_size=macro_block_size
35
+ )
36
+
37
+ n = len(images)
38
+ print('writing',n)
39
+ for i in range(n):
40
+ if image_mode.lower() == 'bgr':
41
+ writer.append_data(images[i][..., ::-1])
42
+ else:
43
+ writer.append_data(images[i])
44
+
45
+ writer.close()
46
+
47
+ # print(f':smiley: Dump to {wfp}\n', style="bold green")
48
+ print(f'Dump to {wfp}\n')
49
+
50
+
51
+ def video2gif(video_fp, fps=30, size=256):
52
+ if osp.exists(video_fp):
53
+ d = osp.split(video_fp)[0]
54
+ fn = prefix(osp.basename(video_fp))
55
+ palette_wfp = osp.join(d, 'palette.png')
56
+ gif_wfp = osp.join(d, f'{fn}.gif')
57
+ # generate the palette
58
+ cmd = f'ffmpeg -i {video_fp} -vf "fps={fps},scale={size}:-1:flags=lanczos,palettegen" {palette_wfp} -y'
59
+ exec_cmd(cmd)
60
+ # use the palette to generate the gif
61
+ cmd = f'ffmpeg -i {video_fp} -i {palette_wfp} -filter_complex "fps={fps},scale={size}:-1:flags=lanczos[x];[x][1:v]paletteuse" {gif_wfp} -y'
62
+ exec_cmd(cmd)
63
+ else:
64
+ print(f'video_fp: {video_fp} not exists!')
65
+
66
+
67
+ def merge_audio_video(video_fp, audio_fp, wfp):
68
+ if osp.exists(video_fp) and osp.exists(audio_fp):
69
+ cmd = f'ffmpeg -i {video_fp} -i {audio_fp} -c:v copy -c:a aac {wfp} -y'
70
+ exec_cmd(cmd)
71
+ print(f'merge {video_fp} and {audio_fp} to {wfp}')
72
+ else:
73
+ print(f'video_fp: {video_fp} or audio_fp: {audio_fp} not exists!')
74
+
75
+
76
+ def blend(img: np.ndarray, mask: np.ndarray, background_color=(255, 255, 255)):
77
+ mask_float = mask.astype(np.float32) / 255.
78
+ background_color = np.array(background_color).reshape([1, 1, 3])
79
+ bg = np.ones_like(img) * background_color
80
+ img = np.clip(mask_float * img + (1 - mask_float) * bg, 0, 255).astype(np.uint8)
81
+ return img
82
+
83
+
84
+ def concat_frames(I_p_lst, driving_rgb_lst, img_rgb):
85
+ # TODO: add more concat style, e.g., left-down corner driving
86
+ out_lst = []
87
+ print('Concatenating result...',len(I_p_lst))
88
+ for idx, _ in enumerate(I_p_lst):
89
+ # track(enumerate(I_p_lst), total=len(I_p_lst), description='Concatenating result...'):
90
+ source_image_drived = I_p_lst[idx]
91
+ image_drive = driving_rgb_lst[idx]
92
+
93
+ # resize images to match source_image_drived shape
94
+ h, w, _ = source_image_drived.shape
95
+ image_drive_resized = cv2.resize(image_drive, (w, h))
96
+ img_rgb_resized = cv2.resize(img_rgb, (w, h))
97
+
98
+ # concatenate images horizontally
99
+ frame = np.concatenate((image_drive_resized, img_rgb_resized, source_image_drived), axis=1)
100
+ out_lst.append(frame)
101
+ return out_lst
102
+
103
+
104
+ class VideoWriter:
105
+ def __init__(self, **kwargs):
106
+ self.fps = kwargs.get('fps', 30)
107
+ self.wfp = kwargs.get('wfp', 'video.mp4')
108
+ self.video_format = kwargs.get('format', 'mp4')
109
+ self.codec = kwargs.get('codec', 'libx264')
110
+ self.quality = kwargs.get('quality')
111
+ self.pixelformat = kwargs.get('pixelformat', 'yuv420p')
112
+ self.image_mode = kwargs.get('image_mode', 'rgb')
113
+ self.ffmpeg_params = kwargs.get('ffmpeg_params')
114
+
115
+ self.writer = imageio.get_writer(
116
+ self.wfp, fps=self.fps, format=self.video_format,
117
+ codec=self.codec, quality=self.quality,
118
+ ffmpeg_params=self.ffmpeg_params, pixelformat=self.pixelformat
119
+ )
120
+
121
+ def write(self, image):
122
+ if self.image_mode.lower() == 'bgr':
123
+ self.writer.append_data(image[..., ::-1])
124
+ else:
125
+ self.writer.append_data(image)
126
+
127
+ def close(self):
128
+ if self.writer is not None:
129
+ self.writer.close()
130
+
131
+
132
+ def change_video_fps(input_file, output_file, fps=20, codec='libx264', crf=5):
133
+ cmd = f"ffmpeg -i {input_file} -c:v {codec} -crf {crf} -r {fps} {output_file} -y"
134
+ exec_cmd(cmd)
135
+
136
+
137
+ def get_fps(filepath):
138
+ import ffmpeg
139
+ probe = ffmpeg.probe(filepath)
140
+ video_stream = next((stream for stream in probe['streams'] if stream['codec_type'] == 'video'), None)
141
+ fps = eval(video_stream['avg_frame_rate'])
142
+ return fps