import gradio as gr from huggingface_hub import InferenceClient from transformers import pipeline from typing import List, Tuple # Importing for type annotations # Initialize the BERT model pipeline for the "fill-mask" task pipe = pipeline("fill-mask", model="bert-base-uncased") # Function to handle the response generation using BERT def respond( message: str, history: List[Tuple[str, str]], # Using List and Tuple for type annotation system_message: str, max_tokens: int, temperature: float, top_p: float, ): messages = [{"role": "system", "content": system_message}] # Append history to the messages list for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) # Append the current user message messages.append({"role": "user", "content": message}) response = "" # Using the BERT pipeline to fill the mask (this is different from the GPT-style completion) # BERT doesn't generate text the same way, so we are simulating a response for this demo result = pipe(f"Hello, how are you today? {message} [MASK]") # Collecting the filled-in mask (likely output from BERT's "fill-mask" task) response = result[0]['sequence'] yield response # Setting up Gradio Interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()